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Effects of meteorological conditions on high BC concentration

at Xi’an from 2003 to 2007

(Zhao Shuyu! )
1 Institute of Earth Environment, Chinese Academy of Sciences, Xi’an China, 710075

Abstract This study mainly investigated the causes of high black carbon (BC) episodes and
effects of meteorological conditions on air quality in winter at Xi’an. Continuous BC mass
concentration was measured from September 2003 to August 2007 at the site of Institute of Earth
Environment, an urban site at Xi’an. Averaged BC concentrations were higher in winter and
autumn than those in summer and spring. High BC concentration often appeared in winter and the
magnitude was higher than those measured at other urban sites. Annual averaged BC
concentration showed a linear decline that indicated the reduction of emissions and proportion of
coal burning in the total energy consumption in winter. Relationships between BC concentration
and meteorological conditions showed that an inversion layer, descending motion in the low
troposphere and weak surface wind jointly contributed to high BC concentration in winter at Xi’an.
Significant negative relationships between BC concentration and boundary layer height, wind
speed implied that meteorological conditions directly affected seasonal variation of BC
concentration. Additionally, less precipitation was also a key factor that led to high BC
concentration in winter at Xi’an due to BC accumulation in the atmosphere.

Keywords: BC, Xi’an, boundary layer height, wind speed, precipitation
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Investigations of the Chemical Characteristics from an Intensive

Sainampling of Ambient Particles in Shanghai, China

(Chong-shu Zhut, Jun-ji Cao*?)

! Key Laboratory of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of

Sciences, Xi‘an, China
2 Institute of Global Environmental Change, Xi’an Jiaotong University, Xi'an, China
Abstract
Ambient daytime and nighttime PM.s and TSP samples were collected in parallel at two sites
(named Pudong and Jinshan) in Shanghai, China. The samples were analyzed for carbon fractions,
elements, water-soluble ions (WSIs) at both sites. The lower concentrations of particulates were
found at Pudong, and higher level of PM2s and TSP concentrations were observed in daytime than
nighttime for both sites. The variations of chemical components (OC, EC, ions and elements) as
well as the species ratios were discussed in depth for daytime and nighttime. The results showed
that organic aerosol and secondary sulfate are the most abundant components of the particle, and
the contributions were variable during the different sampling periods due to the strength of local
emission and the secondary production. The discussion indicated that the particulates were
variable for different areas according to the local emissions and meteorology. The results can give
some indications for the developing effective strategies for urban sub-zone pollution control.

Keywords: PMzs, TSP, carbonaceous fractions, ions, elements, Shanghai
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Fig.2 Hourly variation of PM1o mass concentration
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Comparing new particle formation events between in highly and less
polluted atmosphere: Implication of a critical role of anthropogenic
pollutants in growing new particles to CCN size

(Y.J. Zhut, H.W. Gao?, Z.Q. Duan', G.J. Evans?, X. H. Yao™?)
'Key Lab of Marine Environmental Science and Ecology, Ministry of Education,
Ocean University of China, Qingdao 266100, China
2Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Canada
*Corresponding authors: Email: xhyao@ouc.edu.cn, Tel: 86-532-66782565, fax 1-831-618-6654,

Abstract

When new particles formed in the atmosphere grow over 50-80 nm, they can be activated as cloud
condensation nuclei (CCN) and lead to an increase of cloud albedo. Knowledge gaps still existed,
e.g., 1) in what type of new particle formation (NPF) events new particles can grow over 50 nm? 2)
which chemicals determine the growth of new particles to be over 50 nm? In this study, NPF
events were investigated at two urban sites, in Qingdao and in Toronto, using two identical Fast
Mobility Particle Sizer (FMPS) in spring. The satellite column density of pollution gases and the
particular chemical concentration in PMys both showed much higher concentrations of
anthropogenic air pollutants in Qingdao than in Toronto. NPF events were observed in 16 days out
of 39 sampling days in Qingdao and 13 days out of 31 sampling days in Toronto. The occurrence
frequency of NPF events between Qingdao (41%) and Toronto (43%) was comparable to each
other. In Qingdao, the geometric mean diameter of grown nucleated particles (Dyg,i) in 15 days
grew to larger than 40 nm except in one day when the growth of new particles terminated at ~20
nm. In addition, new particles in 8 days out of the 15 days partly or entirely grew over 50 nm and
they could even reached 100 nm in two days. Two-phase growth was generally observed in these
NPF events of Qingdao. The first-phase growth occurred in daytime and the CMAQ modeling
results suggested that formation of secondary organics was likely the major cause for the growth.
The second-phase growth was observed at night and was associated with the increased
concentrations of NH4* and NOg', implying that NH4NO3 condensation played an important role in
the growth. In Toronto, NPF events in 4 days followed with the growth of new particles <~20 nm
while new particles grew up to ~40 nm in the remaining NPF events. A slight growth of new
particles at night was observed only in 3-days NPF events when the increased concentrations of
NH.*, NOs or the increased relative humidity were observed. However, the calculated Dygi was
less than 45 nm for all NPF events in Toronto, implying a negligible contribution of new particles
to the population of CCN.

Key words: nucleation, particle growth, anthropogenic pollutants, NHsNO3z condensation
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Characterization of Springtime Atmospheric Organic and Elemental
Carbon of PM2s in a Typical Semi-Arid Area of Northeastern China

(Renjian Zhang®", Jun Tao?, K.F. Ho®*#, Zhenxing Shen®)

LRCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,
China
2South China Institute of Environmental Sciences, Guangzhou 510655, China

$SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi‘an 710075, China

# School of Public Health and Primary Care, The Chinese University of Hong Kong, Hongkong,
China

® Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi'an
710049, China

ABSTRACT: Daily particulate matter (PM25) aerosol samples were collected in Tongyu, a
semi-arid area in northeastern China in spring. The concentrations of organic carbon (OC) and
elemental carbon (EC) were determined with a thermal/optical carbon analyzer in the filter
samples. The average concentrations of OC and EC in PMys were 14.1 +8.7 and 2.0 £1.3 pg/m?,
respectively. A good correlation between OC and EC was observed during the spring season,
suggesting that they might be derived from similar sources. The correlation between OC and K*
was high (R = 0.74) and the K*/OC ratio, as determined from their linear regression slope, reached
2.57. The good correlation and the high K*/OC ratio indicated that biomass-burning was probably
one of the major sources of OC in this region. The concentrations of estimated secondary organic
carbon (SOC) in PM2s in Tongyu ranged from below detection limit to 26.1 pg/m?® (mean, 5.9
ug/m?3). The percentages of SOC in OC and in PM2s mass were 42.0% and 2.1%, respectively. The
SOC concentrations during dust storms (DS) periods were higher than those during non-dust storm
(NDS) periods, suggesting that chemical reaction processes involving gas-particle conversion
should have occurred during the long-distance transport of aerosol particles.

Keywords: Semi-arid area; Organic carbon; Elemental carbon; Dust storm.
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Real-time Measurements of Secondary Organic Aerosol from the
Photooxidation of Naphthalene using Single Particle Mass

Spectrometry

(ang Chen® 2, Robert M. Healy?, Shouming Zhou?, and John C. WengYer?)

YUnsitute of Earth Environment, Chinese Academy of Sciences, Xi’an China

2Department of Chemistry and Environmental Research Institute, University College Cork, Cork,

Ireland

Naphthalene is the most abundant polycyclic aromatic hydrocarbon detected in urban air and has
recently been identified as an important precursor for the formation of secondary organic aerosol
(SOA) in the atmosphere. In this work, a series of simulation chamber experiments has been
performed on the photooxidation of naphthalene under a variety of reaction conditions. The decay
of naphthalene was monitored using in situ FTIR spectroscopy and the formation and evolution of
SOA was followed using a scanning mobility particle sizer. An Aerosol Time-of-Flight Mass
Spectrometer (ATOFMS) was used to determine the chemical composition of the SOA in
real-time. In experiments using NOx as the hydroxyl radical precursor, the single particle mass
spectra were found to change slowly over a period of hours. The positive ion mass spectra initially
contained hydrocarbon fragments typical of aromatic species which are tentatively attributed to
ring-retaining oxidation products such as naphthol and nitronaphthalene. After 3-4 hours the
intensity of the hydrocarbon fragments was significantly reduced and the negative ion mass
spectra displayed characteristic features of oxidized organic aerosol and nitrates. Interestingly,
some of these peaks continued to increase after the lights were turned off, suggesting that particle
phase processing was maintained, even under dark conditions. The results from these experiments
indicate that ATOFMS can be used to monitor chemical changes in SOA in real-time and is a

potentially useful tool for investigating aerosol formation and ageing.

Keyword: Secondary Organic Aerosol, Naphthalene, online single particle mass spectrometer.
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Abstract: Black carbon (BC) aerosol is esthetically displeasing as it is responsible for the brown
appearance of urban hazes. In this study, atmospheric BC aerosol was measured using an
aethalometer (AE-31) at an urban location of Haidian District, Beijing from May 2012 to March
2013. A logarithmic negative correlation (R?=0.5120) between BC and visibility suggested that
BC was an important air pollution factor to affect air quality in Beijing. BC concentration showed
significant seasonal variation with mean concentration varying between 4.24 pug m3(summer) to
8.14pug m3 (winter). The highest daily mean concentration was recorded as high as 27.69 ug m=.
The highest concentration of BC occurred during a high pollution haze episode in winter. In a
clear day, BC exhibited a distinct diurnal pattern, with three maximum peaks within a day.
However, BC exhibited a multi—peak diurnal pattern during haze episodes from Dec 2012 to Jan
2013. Statistical factors analysis demonstrated that emission source factors were not increased,
leading to multi-peak diurnal pattern in BC variation. Additionally, Weather Research and
Forecasting Model showed that the boundary layer height during haze episodes hourly varied in a
similar trend with normal days. All the evidence indicated that BC exhibited a rather
higgledy-piggledy diurnal pattern during haze episodes, which played a key role in the
stabilization of haze formation.

Keywords: Black carbon aerosol, Haze formation, Diurnal pattern, Seasonal trend.
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1 Introduction

Haze is defined by China Meteorological Administration as the weather phenomenon which
leads to atmospheric visibility less than 10 km (Huang et al. 2012). It has caught extensive
concern among the scientific community as its adverse effects on air quality, human health,
visibility, cloud formation and global climate (Li, Shao and Buseck 2010, Xiao 2011). Haze
formation is closely related to meteorological conditions and air pollution levels (Wang et al. 2006,
Stock et al. 2012). Recent studies suggest that close linkage exist between PM.s (particulate
matter smaller than 2.5 pum in aerodynamic diameter) pollution in the atmosphere with haze
formation (Lee, Kim and Kim 2006, Quan et al. 2011, Huang et al. 2012, Wang et al. 2006). And
the roles of secondary inorganic ions (NOs~, SO4?-and NH4*) and carbonaceous species fraction in
PM_2s were focused on their contributions to haze formation. Schichte et al. (2001) presented the
patterns and trends of haze over the United States and found that the haze decline was consistent
with the reductions in PM2s and sulfur emissions. Chen et al. (2003) studied the haze formation in
summer in the mid-Atlantic region, and evaluated the role of SO+~ in haze formation. Senaratne
and Shooter (2004) found that the accumulation of diesel emissions contributed most to the
appearance of brown haze in Auckland. In addition, Hou et al. (2006) investigated chemical
characteristics of PM2s in haze-fog episodes in Shanghai and found obvious trends variations in
carbonaceous species of PMy s during haze pollution episode, suggesting a likely key factor in the
formation of haze.

Generally, the carbonaceous species in aerosols are classified into two categories: organic
carbon (OC) and elemental carbon (EC, or black carbon, BC). OC aerosols are derived from
primary source and chemical reactions between primary gaseous OC species in the atmosphere,
whilst BC aerosols are mainly emitted from combustion sources (Ram, Sarin and Tripathi 2012).
OC is considered as a negative climate force as it is a mainly scatter medium, whereas BC as a
positive (warm) climate force as it absorbs solar radiation. Thus BC was considered as the second
strongest contributor to current global warming next to carbon dioxide (Weller et al. 2013). In
addition, BC may also have regional climate impacts. Menon et al. (2002) suggested that high
concentration of BC in India and China is responsible for increase trend of flood in the south
(India) and drought in the north (China). Furthermore, the sunlight absorption by BC could reduce
visibility greatly in the atmosphere (Lin 2012, Cao et al. 2012, Zhou 2012). Owing to its porous
and surface absorption nature, BC could serve as a site for chemically transforming secondary
inorganic ions and

triggering cascade pollution events in the certain meteorological conditions, haze (Yang et al.
2012). Consequently, all these adverse effects of black carbon on climate induced the scientific
community studies in BC emission source, behavior and variations and detrimental impacts on
haze formation.

Observations of elevated BC concentration at global scales have been reported since the early
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1980s (Tripathi et al. 2007, Wang 2011, Chen et al. 2008, Qin and Xie 2012). The regional scale
observation results suggest that China and India are major emission sources of global BC aerosol
(Qin and Xie 2012, Cao et al. 2009, Pan et al. 2011, Geng et al. 2012, Latha and Badarinath 2005,
Tiwari et al. 2013, Rehman et al. 2011). Long-term measurements of BC in urban areas in China
have carried out extensively (Lan et al. 2013, Wang et al. 2012). Qin et al (2012) investigated
multi-year inventories of anthropogenic black carbon emissions in China and found that BC
emission increased from 0.87 Tg in 1980 to 1.88 Tg in 2009 with a peak around 1995, and
continually rising in the first decade of the 21 century. Besides, BC emissions in China contributed
70%—-85% to those in East Asia and 50% in Asia, and accounted for averagely 18.97% of the
global BC emissions in 1980-2009. Therefore, continuous measurement of BC in China could
provide valuable information for further remediation of governmental policy and technology
procedure on reducing BC emission. This study aims to investigate seasonal variation in
aethalometer measured BC concentration at an urban Beijing site from May 2012 to March 2013,
combining with its influence on air pollution and visibility. Daily BC concentration variations
were also analyzed in a heavy haze episode occurred in Dec 2012-Jan 2013. This would provide a
deeper insight for understanding the relation between BC and haze formation in China.

2 Method and Materials

2.1 Sampling site and weather data collection

The measurements presented in this study were registered at an urban site (N 39956'50"7,
E116928'10"8), near a busy traffic line of Beijing. The sampling equipments were set up on the
roof of an office building with height aboveground of 30 m and distance of about 30 m from a
traffic roadside, west 3 ring road (Figure 1), without major industry nearby.

The weather data, including visibility and daily average of meteorological elements (RH,
temperature and wind speed) during the sampling period, were downloaded from
wunderground.com website. The boundary layer height was calculated by Weather Research and
Forecasting Model (WRF). This model is configured to cover east part of China (26-45°N,
102-134°E) with 80 (S-N) *90 (W-E) grid points, a 27 km horizontal resolution centering at
Central China (36°N, 117.5°E), and 35 vertical layers up to 10 hPa. The Runge-Kutta 3rd order
time-integration scheme, Noah land surface model, Mellor-Yamada-Janjic Planetary Boundary
Layer scheme, and Grell-Devenyi Ensemble Cumulus clouds scheme are used. The initial
meteorological fields and boundary conditions are from NCEP Final reanalysis data with 1°x1°
spatial resolution and 6-hour temporal resolution. The simulation is conducted from December
2012 to January 2013.

The daily air pollution index of Beijing is from Beijing Municipal Environmental Protection
Bureau (BMEPU) (http://www.bjepb.gov.cn/air2008/Air.aspx). Currently, only six pollutants
including SO2, NO», CO, O3, PMipand PM_ are cited to the notification of API in Beijing. The
grades of API are defined according to the daily standards of the above four pollutants. Daily API
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is defined as: API=Max[API(SO,), API(Os3), API(CO), API(O3), API(PM1s), API(PM25)], where
API(SOz), API(O3), API(CO), API(O3), API(PMy0) and API(PM2s) are the partial indexes of air
pollutant SOz, NO,, CO, O3, PMypand PMas, respectively. When C; <Ci<Cij+1, API; is defined as:
where C; is the daily average concentration of air pollutant i (i.e. SO2, NO2, CO, O3, PMygand
PM2s). According to air quality daily report from BMEPU, the primary pollutant in Beijing was
particulate matter all year around.
2.2 Measurement Instruments

Black carbon concentration was continuously measured using an aethalometer AE 31
manufactured by Magee Scientific USA. The aethalometer is an instrument providing a real time
read out of the BC aerosol concentration in air stream. The instrument aspirates ambient air using
its inlet tube. BC mass concentration was estimated by measuring the change in the transmittance
of a quartz filter tape, on to which particles impinge. BC mass concentration was measured by
7-wavelength aethalometer online monitor with temporal resolution of 5 min during study period.
It measured the optical attenuation (absorbance) of light from LED lamps emitting at seven
wavelengths (370, 470, 520, 590, 660, 880 and 950 nm) with a typical half-width of 20 nm. These
data are automatically recorded in the flash card of the instrument and displayed on the screen.
The BC determination assumes that all the light-absorbing materials are composed of BC. The
calibration of the flow rate was processed quarterly in the normal condition but did accordingly if
the measurement became noisy during continuous operation (Lyamani et al. 2011). More details
on the instrument and the principle of operation are given elsewhere (Weingartner et al., 2003).
3. Results and discussion
3.1 BC concentration and its relationship with API and visibility

The annual BC concentrations ranged from 0.72 to 27.69 ug m™ with mean 5.51ug m* and
standard deviation 4.43 pg m during the sample period from May 2012 to March 2013. This
mean BC value was higher in comparison with those measured in 2005 (Zhou et al. 2009) and
2008 (Pan et al. 2010), probably due to increase in BC emission sources in Beijing. Annually
mean API at Wanliu Environmental Monitor Station was 89367 in the studied period with 26.7 %
exceeding Chinese air quality API limit (API=100, PM.s=75ug m) frequently recorded. The
daily visibility in this study was in the range of 1-30 km, with the average of 10.7 km, which was
much lower than that in many other large cities in the world, indicating a serious air quality
situation in Beijing (Deng et al. 2011, Park et al. 2006). Daily BC concentration significantly
correlated (R=0.6207) and positively sloped with API (Figure 2), implying that BC concentration
could be a sensitive indicator to air pollution level. In addition, our measured BC concentration
was significantly, logarithmically and negatively correlated (R>=0.5120) with visibility.

Table 1 shows that seasonal average BC values varied by nearly twofold, from a low value of

4.2442,05 pg m2 in summer to 8.1446.37 ug m in winter. The significant decreasing trends of

visibility and API in summer comparing with winter was also observed at a=0.05 level. Similar
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seasonal variations were also observed in urban areas in Europe (and elsewhere) but not in natural
background sites where no seasonal variations were observed (Ramachandran and Rajesh, 2007).
In quantitative examples, RG3li et al. (2001) reported higher magnitudes, 2.2-2.9 ug m (for
spring and summer) and 3.5-4.6 ug m* (in fall and winter), in comparison with other results
(Lyamani et al., 2008, 2010, 2011), where enhancements from 2 up to 4-4.5 pg m were observed
between the summer and the winter. Similar seasonal variation features were also observed at
Portuguese rural and urban environments, from 0.3 to 0.65 pg m= (spring/summer) up to
1.1-1.7ug m® (autumn/winter) in rural sites and from 1.8 to 2.7 up to 4.2-5.3ug m in urban sites
of Coimbra and Oporto (Castro et al., 1999). Based on the good correlation of BC with API and
visibility, it is interesting to note that the seasonal differences in the BC concentrations may result
in different weather phenomenon in Beijing. As an example, the winter in 2012 was characterized
by a higher frequency of urban haze pollution episode than the rest seasons of the year and thus
BC levels registered were higher, conversely, visibility was lower.
3.2 Black carbon variation during haze episodes

An attempt was made to study the diurnal variation of BC during a high pollution haze episode
from Dec 2012 to Jan 2013. The average of 5 min BC value for selected day was plotted and result
is shown in Figure 3. A distinct diurnal variation is observed in a normal day. Three peaks are
observed, one in the morning around 07:00, others at noon around 12:00 and in the evening 19:00
local time. At the point from late night to early morning, there was a sharp increase in the BC
concentration, likely due to vehicular emissions during the morning rush-hour. Primarily due to
the decreased emissions raised by reduced vehicular traffic, the decrease in BC concentration was
observed between 9:00 and 12:00, when the boundary layer height and wind speed remained
constantly low (Figure 4). A slow increase in BC concentration at noon can also be partially
explained by local human activities, such as cooking using fossil fuel. On the other hand, the
steady decrease in BC concentrations after the noon peak can be attributed to the
enhanced vertical and horizontal diffusion of aerosols, due to gradual increase in
boundary layer height and wind speed, inaddition to the relative decrease in traffic.
Between 18:00 and 21:00, BC concentration was similarly high to that in the morning,
attributing to evening rush-hourly traffic emission and domestic heating. The diurnal profile for
BC concentrations measured in this study is very similar to those observed in other locations
(Beegum et al. 2009, Baxla 2009, Lyamani et al. 2011).

In each haze episode, the diurnal profiles of BC concentrations appeared the peaks in different
time (in Figure 3), seemly indicating different features in source emissions and the atmospheric
boundary layer dynamics. However, daily average meteorological elements (RH, temperature and
wind speed) during the selected days remained at the same level (Table 2). In addition, the hourly
boundary layer height during haze episodes behaved in a similar trend in comparison with a

normal day (Figure 4). Thus, another attempt was made to find source factors to affect BC
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variation during a normal day and haze episodes. Figure 5 listed BC concentration distributions
during a normal day and haze episodes. None of them showed the bell shaped feature with the
exception of a normal distribution (Table 2 and Figure 5). The multimodal features shown in the
histograms (Figure 5) gave a hint of mixed influence factors, resulted by different emission
sources diurnally. Since most statistical methods were generally designed for a single influence
factor, the possible multiple influence factors were necessary to be treated separately. Factors
contributing to diurnal variation in BC concentrations were determined by using cumulative
probability distribution method, which has been widely used in previous studies to calculate factor
contributions to heavy metal contamination in soil (Sun et al. 2001, Siegal 2002). The cumulative
probability distribution versus log BC during a normal day and haze episodes was calculated with
different trends within the study area. Linear regression was further applied to build statistical
calculations between diurnally variable BC concentrations and source factors. The statistical
analysis demonstrated that four individual factors could be extracted with good correlation
(R?>0.88) to explain BC variables during a normal day and haze episodes (Figure 6). As one
factor, vehicular emission is a known source of BC in urban environments (Chow et al. 2011).
Subsequently, coal-burning and Chinese cooking process would contribute two more source
distribution of BC variation, as being the focus of a number of studies (Zhao et al. 2007, Shores et
al. 2012, Chow et al. 2011). In addition, various degree of BC was observed at a background level
in the atmosphere (Cao et al. 2011, McMeeking et al. 2011). Thus four log-normal against
cumulative probability liner regression models were fitted to the frequency distributions, in
agreement with former discussions on the diurnal profile for BC in a normal day.

The emission sources investigation shows that source factors in the normal day resemble those
in haze episodes. This implies that BC diurnal variation is generally controlled by meteorological
elements, low wind shear and ventilation coefficient, in haze episodes. All observational haze days
bear low visibility and high load PM, but aerosol particles in different hazes bear different
compositions, morphologies, and mixing states. In the atmosphere, BC particles are commonly
formed after BC is coated with sulfates, organic matter and sulfuric acid, thus enhancing the
light absorption of BC element (Cao et al. 2011, McMeeking et al. 2011). Furthermore, the aging
of BC particles may increase the absorption of visible solar radiation in comparison with BC
element (Li et al. 2010, Xiao 2011). In our study, fresh BC emissions, after long-term residence in
atmosphere, not only make the chemical transformation of aerosol particles complicated during
the transport but also changed their physical properties in downwind areas. Therefore, long
residence of BC in the atmosphere in haze episodes likely resulted in the stable haze formation.

4. Conclusions

In this study we have investigated BC concentrations at an urban area, Beijing, China, from

May 2012 to March 2013. The daily mean BC concentrations varied from 0.72 to 27.69 pg m

with mean 5.51pg m?® and standard deviation 4.43 pg m?3. The seasonal average BC
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concentrations ranged by nearly twofold, from 4.2442.05 in summer to 8.144+6.37 pg m™ in winter.
In addition, daily BC concentration significantly correlated (R=0.6207) and positively sloped with
API, thus could be an indicator of air pollution level. In addition, BC was significantly,
logarithmically and negatively correlated (R?=0.5120) with visibility, thus could be an important
air pollution factor influencing air quality in Beijing.

Distinct diurnal variation of BC concentration was observed with three maximum peaks in
normally clear days, two for rush hours and one for cook hours. In haze episodes, diurnal BC
concentration bore a multi-peak pattern. Moreover hourly boundary layer height in all haze
episodes behaved in a similar trend to a normal day. Factors contributing to diurnal variation in
BC using cumulative probability distribution method indicated that emission source factors were
not increased, leading to the increase of BC concentration. In conclusion, long residence of BC in
the atmosphere in haze episodes likely resulted in the stable haze formation.
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Figure 2 Relationship of black carbon concentration with API(a) and visibility(b) during the sample period in Beijing.
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Figure 3 5-min average variations of black carbon concentration during a normal day and haze episodes.

633



11st National Aerosol Conference and 10™ Cross-strait Workshop for Aerosol Science and Technology

3000
——— Dec 27 haze
2500 ——— Dec 28 haze
’é\ —— Dec 31 normal day
= —<—Jan 11 haze
E” 2000 ——Jan 12 haze
2 —<—Jan 13 haze
3 1500 -
8
>
] m
I 1000
c
S
o
@ 500
04

Figure 4 1-hour variations of boundary layer height during a normal day and haze episodes.
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Figure 6 Plots of cumulative probability distribution versus log BC during a normal day and haze episodes.
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Table 1 Statistical parameters of black carbon (g m) concentration and detail meteorological information per season in Beijing

Season  Average Standard Maximum Minimum API RH? (%) WSP Temperature Visibility
value deviation value value (m/s) e (km)
Spring 4.30 2.20 8.78 1.08 69 48 2.6 10.1 15.8
Summer 4.24 2.05 10.42 0.99 69 70 2.0 25.8 9.1
Autumn  5.97 5.14 26.41 0.73 108 60 2.3 12.3 12.7
Winter 8.14 6.37 27.69 0.92 130 73 2.0 0 3.0

AWS, wide speed; PRH, relative humidity
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Table 2 Statistical parameters f black carbon (g m) distribution and detail meteorological information during a normal day and haze episodes.

Date Weather  API RH? (%) WSP Temperature  Visibility Average  Standard  Variation Skewness Kurtosis
(m/s) ey (km) value deviation  coefficient coefficient coefficient
Dec 27 haze 119 67 1.9 -10 4.5 13.41 2.60 0.19 0.69 -0.69
Dec 28 haze 147 70 2.2 -8 3.4 18.01 2.68 0.15 1.66 2.36
Dec31 normal 95 55 1.4 -8 10 3.91 1.40 0.36 0.55 0.94
Jan1l  haze 413 75 14 -4 2 17.60 2.70 0.15 0.32 -0.59
Jan12  haze 498 81 1.1 -7 2.4 17.28 7.80 0.45 -0.13 -1.40
Jan13  haze 401 79 1.7 -4 15 27.69 3.60 0.13 2.35 5.44

WS, wide speed; PRH, relative humidity
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