西安市秋季大气细粒子(PM_{2.5})中化学元素的浓度特征和来源

甘小凤¹² 曹军骥²³ 汪启元⁴ 沈振兴⁴ 徐红梅²

(1. 西安交通大学环境科学与技术系 陕西西安 710049; 2. 中国科学院地球环境研究所黄土与第四纪地质国家重点实验室 陕西西安 710075; 3. 西安交通大学全球环境变化研究院 陕西西安 710049; 4. 西安交通大学环境工程系 陕西西安 710049)

摘要 [目的]研究西安市秋季大气细粒子($PM_{2.5}$) 中化学元素的浓度特征及来源。 [方法]于 2009 年 10 月利用微流量采样器采集西安 大气中 $PM_{2.5}$ 样品 分析其元素浓度特征及来源。 [结果]西安市秋季大气中 $PM_{2.5}$ 质量浓度的平均值为 168.44 $\mu g/m^3$,最小值为 53.29 $\mu g/m^3$ 最大值达 358.16 $\mu g/m^3$ 高于北京、珠江三角洲; $PM_{2.5}$ 中 S、Zn、K、Cl、Ca、Fe 的质量浓度均超过 1.0 $\mu g/m^3$ 处于较高污染水平; $PM_{2.5}$ 中 K 与有机碳(OC) 、元素碳(EC) 的相关性较高 相关系数分别为 0.76 和 0.75(P < 0.000 1) 说明 OC、EC 与 K 具有相同的来源, 生物质燃烧对 OC、EC 有一定的贡献; 元素的富集因子分析表明 K、Ca、Fe、Ti、Mn 和 Cr 主要来源于地壳或岩石风化等自然源 而 S、Zn、 Cl、Pb、Br、Mo、Cd 和 As 主要受人为污染源的影响 而受土壤扬尘等自然源的影响较小 其中 Cd 的富集因子最大,主要来源于金属冶炼 等人为污染; 燃煤、生物质燃烧、机动车尾气排放、冶金化工、扬尘等是该区秋季 $PM_{2.5}$ 的主要来源。 [结论] 该研究为城市环境污染治理 提供了理论依据。

关键词 大气细粒子; 化学元素; 富集因子; 因子分析

中图分类号 P435⁺.1 文献标识码 A 文章编号 0517-6611(2011)19-11692-03

Concentration Characteristics and Sources of Chemical Elements in Atmospheric Fine Particles ($PM_{2.5}$) in Autumn in Xi' an City GAN Xiao-feng et al (Department of Environmental Science and Technology, Xi' an Jiaotong University, Xi' an , Shaanxi 710049) Abstract [Objective] The aim was to study the concentration characteristics and sources of chemical elements in atmospheric fine particles ($PM_{2.5}$) in autumn in Xi' an City. [Method] By means of min-volume sampler, $PM_{2.5}$ samples in atmosphere in Xi' an were collected in October 2009, and the concentration characteristics and sources of elements in $PM_{2.5}$ were analyzed. [Result] The average mass concentration of $PM_{2.5}$ in atmosphere in autumn in Xi' an City was 168.44 $\mu g/m^3$ which was higher than that of Beijing and Pearl River Delta area, and the minimum and maximum value were 53.29 and 358.16 $\mu g/m^3$, respectively. The mass concentration of S , Zn , K , Cl , Ca and Fe in $PM_{2.5}$ was above 1.0 $\mu g/m^3$, with high pollution level. In addition , K had obvious correlation with organic carbon (OC) and element carbon (EC), with the correlation coefficients of 0.76 and 0.75 (P < 0.000 1) respectively , and it showed that OC and EC had the same source as K , namely biomass burning had certain contribution on OC and EC. Enrichment factors analysis revealed that K , Ca , Fe , Ti , Mn and Cr came from earth crust , rock weathering and other natural sources , while anthropogenic pollution sources had great effects on S , Zn , Cl , Pb , Br , Mo , Cd and As which were affected by soil dust and other natural sources slightly , among them , Cd had the highest enrichment factor and mainly came from metal smelting. Besides , coal combustion , biomass burning , vehicle emissions , metallurgical and chemical industry and dust were the main sources of $PM_{2.5}$ in autumn in Xi' an. [Conclusion] The study could provide theoretical foundation for the control of urban environmental pollution.

Key words Atmospheric fine particles; Chemical element; Enrichment factor; Factor analysis

大气细粒子不仅给人们的身体健康带来了严重的危害, 而且还对城市能见度产生巨大的影响,并通过吸收和散射太 阳辐射,直接改变地气系统的能量收支状况^[1]。另外,大气 细粒子还可以通过水平输送传输到其他地区,进而影响区域 大气环境^[2]。目前,有关西安市大气细粒子中化学元素含量 的研究较少。因此,笔者对西安市秋季大气细粒子(PM_{2.5}) 中化学元素的浓度特征和来源进行分析,以期为城市环境污 染治理提供理论依据。

1 研究方法

1.1 样品采集 PM_{2.5}采样点位于西安市(34°16′N,108°54′E) 西南的高新产业区 采样仪安置于中国科学院地球环境研究所楼顶 采样头距离地面 10 m 周围没有明显污染源 能较好地代表西安市大气状况。采用配有 2.5 μm 切割头的便携式微流量采样器(Min-vol Sampler, Airmetrics, USA) 于 2009 年 10月1日~31日采集大气中 PM_{2.5}样品 共采集 31 个样品 采样器流量为 5 L/min 所用石英滤膜直径为 47 mm。

1.2 样品分析 元素组分分析采用 XRF 即 X 射线荧光光 谱分析仪。有机碳(OC)、元素碳(EC)分析采用 DRI Model 2001 热光碳分析仪和 IMPROVE(Interagency Monitoring of Protected Visual Environments) 热光反射方法。OC、EC 数据 质量控制采用美国沙漠所(DRI) 质量控制标准,每10个样品 中随机选择1个样品进行复检,如果OC、EC 的偏差在10% 以内则说明该样品的分析结果是有效的。

1.3 无机元素的来源分析

1.3.1 富集因子分析。取 Fe 作为参比元素,西安市 PM_{2.5} 中元素富集因子(*EF*)的计算公式为^[3]:

$$EF = \frac{(C_{\pi \bar{x}} / C_{Fe})_{PM_{2.5}}}{(C_{\pi \bar{x}} / C_{Fe})_{u \bar{\pi}}}$$

式中 $C_{\pi\pi}/C_{Fe}$ 为 PM_{2.5}或地壳中某一元素与 Fe 浓度的比值。 各元素浓度背景值取陕西省平均土壤背景值^[4],只有 S、Cl 取土壤丰度值^[5]。当 *EF* < 10 时,则可认为该元素是非富集 的,主要来源于地壳或岩石风化等自然源; 当 *EF* > 10 时,则 认为该元素被富集了,主要来源于人为污染^[6]。

1.3.2 最大方差旋转因子分析。受体模型是解析大气颗粒物中化学组分来源的一种重要方法,被广泛应用于粒子源解析研究^[7]。应用 SPSS 软件对西安市秋季 PM_{2.5}中化学元素的浓度进行最大方差旋转因子分析。

2 结果与分析

2.1 PM_{2.5}中化学元素的组成特征 表1表明 2009 年秋季 西安市大气中 PM_{2.5}的平均质量浓度为 168.44 ± 79.48 μg/m³ 最小值为 53.29 μg/m³ 最大值达 358.16 μg/m³。西

基金项目 中国科学院西部之光联合学者项目(0929011018)。

作者简介 甘小凤(1984 –),女,四川邻水人,硕士研究生,研究方向: 大气环境,E-mail: yolandgxf@163.com。 收稿日期 2011-04-18

西安市秋季 PM,、中化学元素及 OC、EC 质量浓度

11693

安市 PM_{2.5}的平均质量浓度是美国 PM_{2.5}日均质量浓度标准 (35.00 μg/m³)的4.8倍;与国内其他城市相比 远高于北京

表1

(64.05 μg/m³)^[8]、珠江三角洲(41.30 μg/m³)^[9] 表明西安 市大气细粒子污染比较严重。

	Table 1 Mass concentration of chemical elements OC and EC in PM2.5 in autumn in Xi' an City									μg/m							
质量浓度	PM _{2.5}	s	Cl	K	Са	Ti	Cr	Mn	Fe	Zn	As	Br	Mo	Cd	Pb	OC	EC
	168.44	3.65	1.45	1.68	1.41	0.09	0.01	0.09	1.07	2.51	0.02	0.05	0.05	0.03	0.35	30.38	10.44
Average																	
标准偏差	79.48	2.11	1.43	3.78	0.89	0.12	0.01	0.07	1.43	2.12	0.01	0.03	0.02	0.02	0.21	10.68	5.47
Standard deviation																	
最小值	53.29	1.13	0.15	0.31	14.71	0.02	0.04	0.02	0.14	0.24	0.01	0.01	0.10	0.07	0.08	12.86	2.39
Minimum																	
最大值	358.16	9.47	5.62	4.26	0.01	0.65	0.01	0.33	7.93	9.05	0.06	0.12	0.03	0.01	0.98	55.27	23.38
Maximum																	

由表1可见,西安市秋季 $PM_{2.5}$ 中 14 种元素的日平均质 量浓度为 12.46 μ g/m³,占 $PM_{2.5}$ 的 7.4%。其中 $S_5K_5Cl_5Ca_5$ Zn_5Fe 的质量浓度均超过 1.0 μ g/m³,分别为 3.65 ± 2.11、 1.68 ± 1.43 \cdot 1.45 ± 1.43 \cdot 1.41 ± 0.89 \cdot 2.51 ± 2.12 \cdot 1.07 ± 1.43 μ g/m³,处于较高污染水平,占总化学元素的 97.3%。 从各元素所占比例来看 S 是最主要的元素成分,主要来源于 化石燃料燃烧所产生的单质硫以及 SO₂ 经还原反应产生的 二次硫颗粒。可见,燃煤仍然是西安市大气污染物的主要排 放源; Zn 和 Pb 所占比例也较大,说明机动车尾气排放对大气 细粒子的影响也非常重要; K 对 PM_{2.5}的贡献仅次于 S 和 Zn, 占总化学元素的 13.5% 细粒子中 K 的主要来源为生物质燃 烧,说明秋季西安市周边的生物质燃烧对污染物的贡献也较 大,而采样点周围则没有明显的燃烧源,主要与区域生物质 燃烧引起的 K 输送有关; Ca 和 Fe 在总化学元素中也占一定 比例,说明地面扬尘、道路灰尘等粉尘源对大气颗粒物的贡 献较大。

2.2 PM_{2.5}中 OC 与 EC 的质量浓度特征 由表 1 可见 OC 和 EC 的平均质量浓度分别为 30.38 ± 10.68 和 10.44 ± 5.47 μ g/m³ 分别占 PM_{2.5}的 18.0% 和 6.2% ,表明 OC 和 EC 是 PM_{2.5}的重要组成成分。另外 利用 OC、EC 的相关性分析可 在一定程度上对大气碳气溶胶的来源进行定性分析^[10],若 OC 和 EC 的相关性好 则表明 OC、EC 来自于相同的污染源。由图 1 可知 ,西安市秋季 PM_{2.5}中 OC 和 EC 的相关性较好(*R* = 0.88 *N* = 31 *P* < 0.000 1) ,这表明秋季 PM_{2.5}中 OC 和 EC 的来源相对简单 ,主要来源于燃煤和机动车尾气的排放。K 与 OC(*R* = 0.76 *N* = 30 *P* < 0.000 1)、EC(*R* = 0.75 *N* = 30 *P* < 0.000 1)、DEC(*R* = 0.75 *N* = 30 *P* < 0.000 1) 的相关性也较好 这说明 OC、EC 与 K 有相同的来源 ,由于大气细粒子中 K 主要来源于生物质燃烧,表明秋季 生物质燃烧对 OC、EC 也有一定的贡献。

图1 西安市秋季 $PM_{2.5}$ 中 OC、EC、K 之间的相关性

Fig. 1 Correlation among OC EC and K in PM2.5 in autumn in Xi' an City

2.3 无机元素的来源分析

2.3.1 富集因子分析。由图 2 可见, 各元素的富集因子变 化范围较大(0.70~9 395.51),其中,Cd的 EF 值最高,Ti的 EF 值最低。富集因子主要是用来判断元素是地壳来源还是 人为来源^[6] K、Ca、Fe、Ti、Mn和 Cr的富集因子小于 10,说明 这些元素是非富集的,主要来源于地壳或岩石风化等自然 源; S、Zn、Cl、Pb、Br、Mo、Cd和 As 的富集因子大于 10 表明这 些元素已被富集,主要受人为污染源的影响,而受土壤扬尘 等自然源的影响较小,其中 Cd 的富集因子最大,主要来源于 金属冶炼等人为污染。

2.3.2 最大方差旋转因子分析。表 2表明,第1~4个因子

的累积方差贡献率为 87.30%,F1 中 Cl、K、Ca、Ti、Cr、Mn、Fe、 Br 的相关系数较高,方差贡献率为 44.52%,主要代表了生 物质燃烧、土壤及地面扬尘来源,主要包括秸秆燃烧、交通运 输引起的道路扬尘、裸露土壤扬尘和建筑扬尘等;F2 与 S、 Zn、As、Pb 的相关性较高,方差贡献率为 22.15%,可能与燃 煤、机动车尾气排放、冶金化工等有关,主要代表了人为来 源;F3 中具有较高相关系数的元素是 Cd,可能与金属冶炼有 关;F4 与 Mo 有较高的相关性。

为了进一步了解秋季 PM_{2.5}中各元素的关系和来源,对 其相关性进行了统计分析(表3)。相关分析表明,地壳元素 Mn、Ca、Fe、Ti 的相关性较好,说明这些元素主要来源于地面

图 2 西安市秋季 PM_{2.5}中各元素的富集因子

表 2 西安市秋季 PM_{2.5} 中元素与各因子间的相关系数

Table 2 Correlation coefficients between elements and factors in autumn in Xi'an City

一 元素 Element	F1	F2	F3	F4
s	0.28	0.81	0.32	-0.30
Cl	0.70	-0.05	-0.51	0.41
K	0.85	0.06	0.20	-0.44
Ca	0.85	-0.48	0.04	-0.08
Ti	0.86	-0.46	0.09	-0.09
Cr	0.86	-0.30	-0.08	0.01
Mn	0.94	0.09	-0.12	0.04
Fe	0.90	-0.38	0.10	-0.10
Zn	0.36	0.61	-0.55	0.18
As	0.42	0.73	0.46	0.06
Br	0.73	0.25	0.11	0.12
Mo	0.26	0.08	0.42	0.81
Cd	-0.05	-0.13	0.71	0.18
Pb	0.40	0.87	-0.20	-0.06
特征值 Eigenvalue	6.23	3.10	1.67	1.22
方差贡献率	44.52	22.15	11.94	8.69
Variance contribution rate // %				

扬尘; 而 Cl 和 K 的相关系数为 0.59 ,与 S 的相关系数较小, 这说明 Cl 与生物质燃烧有很大关系; Fe、Ti 等与 Br、Cr、K、Cl 的相关性较好,这说明除地壳来源外,生物质燃烧等人为来 源也使得地壳元素的含量增加;一些人为污染元素(如 Pb、 Cr、As) 与其他元素之间表现出一定的相关性,如 Pb-S、Pb-Cl、Pb-K、Pb-Mn、Pb-Zn、Pb-As、Pb-Br、As-S、As-K、As-Mn、Cr-Cl、Cr-K、Cr-Ca、Cr-Ti 之间的相关性较好。可见,人为污染源 是多种多样的,其中燃煤、生物质燃烧、机动车尾气排放及工 业排放是主要的来源。

3 结论

(1) 西安市秋季大气中 PM_{2.5}的平均质量浓度为 168.44 μg/m³ 最小值为 53.29 μg/m³ 最大值达 358.16 μg/m³ 高 于北京、珠江三角洲。其中 S、K、Cl、Ca、Zn、Fe 的质量浓度 均超过 1.0 μg/m³ 处于较高污染水平。

(2) 西安市秋季 PM_{2.5}中 K 与 OC、EC 的相关性较高 相 关系数分别为 0.76 和 0.75(*P* < 0.000 1) 这说明 OC、EC 与 K 有相同的来源 /生物物质燃烧对 OC、EC 也有一定的贡献。

(3) 元素的富集因子分析表明 .PM_{2.5}中 K、Ca、Fe、Ti、Mn 和 Cr 的富集因子小于 10 ,说明这些元素主要来源于地壳或 岩石风化等自然源; S、Zn、Cl、Pb、Br、Mo、Cd 和 As 的富集因 子大于 10 表明这些元素主要受人为污染源的影响 ,而受土 壤扬尘等自然源的影响较小 ,其中 Cd 的富集因子最大 ,主要 来源于金属冶炼等人为污染。

(4) 元素因子分析表明,燃煤、生物质燃烧、机动车尾气 排放、冶金化工、扬尘等是西安市秋季 PM_{2.5}的主要来源。

表 3 西安市秋季 PM_{2.5}中各化学元素间的相关系数矩阵 Table 3 Correlation coefficient matrix among various elements in autumn in Xi' an City

元素 Element	5	Cl	K	Са	Ti	Cr	Mn	Fe	Zn	As	Br	Мо	Cd	Pb
	5													
s	1													
Cl	0.05	1												
K	0.46^{*}	0.59**	1											
Ca	-0.10	0.56^{*}	0.72**	1										
Ti	0.03	0.65 * *	0.76	0.99**	1									
Cr	0.06	0.62**	0.62**	0.82**	0.74**	1								
Mn	0.33	0.84**	0.84**	0.76**	0.78**	0.66**	1							
Fe	0.12	0.66**	0.80**	0.99**	0.99**	0.74**	0.83**	1						
Zn	0.37	0.72**	0.48 * *	0.03	0.26	0.28	0.69**	0.31	1					
As	0.76**	0.25	0.57**	0.01	0.21	0.16	0.50**	0.29	0.43*	1				
Br	0.46^{*}	0.64**	0.67**	0.42	0.53**	0.65**	0.73**	0.59**	0.52**	0.58**	1			
Mo	-0.08	0.04	-0.12	0.18	0.02	0.19	0.00	0.02	-0.07	0.16	0.00	1		
Cd	-0.15	-0.31	-0.21	0.03	-0.09	-0.09	-0.26	-0.12	-0.31	-0.13	-0.19	0.39**	1	
Pb	0.73**	0.54**	0.62**	-0.05	0.21	0.21	0.65**	0.29	0.83**	0.77**	0.63**	-0.04	-0.32	2 1

注: * * 和* 分别表示在 0.01 和 0.05 水平上显著。

Note: * * and * stand for significant correlation at 0.01 and 0.05 level respectively.

参考文献

- [1] 李学彬 宮纯文 徐青山 海. 气溶胶细粒子与能见度的相关性[J]. 光学 精密工程 2008 16(7): 1177 - 1180.
- [2] ALLEN A G NEMITZ J P HARRISON J C. Size distributions of trace metals in atmospheric aerosols in the United Kingdom [J]. Atmospheric Environment 2001 35(27):4581-4591.
- [3] HUANG H ,LEE S C ,CAO J J ,et al. Characteristics of indoor/outdoor PM_{2.5} and elemental components in generic urban roadside and industrial plant areas of Guangzhou City ,China [J]. Journal of Environmental Sciences 2009 J9:35 – 43.
- [4] 国家环境保护局. 中国土壤元素背景值 [M]. 北京: 中国环境科学出版

社 1990:347-379.

- [5] 迟清华 鄢明才. 应用地球化学元素风度数据手册[M]. 北京: 地质出版 社 2007: 101 – 102.
- [6] TAYOR S R MCLENNAN S M. The Continental Crust: Its Composition and Evolution [M]. Uxford: Blackwell Scientific 1985.
- [7] CAO J J LEE S C ZHENG X D et al. Characterization of dust storms to Hong Kong in April 1998 [J]. Water Air and Soil Pollution Focus 2003 3: 213 – 229.
- [8] 王京丽 刘旭林.北京市大气细粒子质量浓度与能见度定量关系初探
 [J]. 气象学报 2006 64(2):221-228.

(下转第11697页)

化和厌氧氨氧化时,Nitrosomonas sp. 为优势菌种。

SND 工艺。广义上讲 同时硝化和反硝化(Simulta-3.2.5 neous Nitrification and Denitrification SND) 是指硝化与反硝化 反应同时在同一反应器中实现 很多研究报道证实了同时硝 化反硝化伴随着异养硝化和好氧反硝化。刘强等[23]采用 DGGE 技术研究了随有机碳与无机氮(C/N)的升高自养硝 化膜上微生物群落结构的变化,结果表明随 C/N 比的升高, 微生物菌群从以硝化菌为主导变为以反硝化菌为主导 反应 器内也发生了同时硝化反硝化,主要的硝化菌是 Nitrosomonas europaea 和 Nitrobacter sp.; 主要的反硝化菌是 Pseudomonas sp.、Acidovorax sp. 和 Comamonas。 Xia 等^[24] 采用 DGGE研究了在不同 C/N(10:1 5:1 3:1)比条件下,生物膜 反应器的处理效果及同时硝化反硝化系统中微生物群落的 变化 结果表明在接种污泥中优势菌种为 uncultured β-proteobacteria C/N 比为 10:1 时优势菌种为 Comamonas C/N 比 为 5:1 时反应器内出现了与 Nitrosomonas 和 Comamonas 相似 性较高的菌种,C/N为3:1时除有与Nitrosomonas和Comamonas 相似度高的菌种外,反应器内还出现了属于 Methylophilus 的菌种。

4 展望

在脱氮微生物学研究方面,未来异养硝化菌、好氧反硝 化菌、自养反硝化菌和厌氧氨氧化菌等是研究热点,对上述 种类菌群的研究将会极大地推动脱氮技术的发展。为了能 够更好地反映微生物群落结构、功能和动态变化,可将 DGGE 技术与其他技术(如与激光共聚焦扫描显微镜、显微 放射自显影等技术)相结合,形成分子联用技术,这方面将是 今后 DGGE 应用的研究方向。

参考文献

- [1] MUYZER G ,WAAL E C , UITERLINDEN A G. Profiling of complex microbial populations by denaturing gradient gel elecnoplhoersis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology 1993 59(3):695 –700.
- [2] 李军 杨秀山 彭永臻. 微生物与水处理工程[M]. 北京: 化学工业出版 社 2002: 378 - 379.
- [3] ROBERTSON L A KUENEN J G. Aerbic denitrification: a controversy revired [J]. Arch Microbiol 1984 139(5):351-354.
- [4] 尹明锐 汪苹 刘建楠 筹. 具有 N₂O 控逸能力的异养硝化 好氧反硝 化菌株的筛选鉴定[J]. 环境科学研究 2010 23(4):515 - 520.
- [5] 王海燕周岳溪刘海涛等.亚硝化/电化学生物反硝化全自养脱氮工 艺细菌形态及多样性研究[J].环境科学学报201030(2):327-339.
- [6] STROUS M KUENEN J G JETTEN M S M. Key physiology of anaerobic ammonium oxidation [J]. Applied and Eevironmental Microbiology ,1999 , 65(7): 3248 – 3250.
- [7] 秦玉洁 周少奇. 厌氧氨氧化菌的研究进展 [J]. 生态学杂志 2007 26 (11): 1867 – 1872.
- [8] SCHMID M C MAAS B DAPENA A et al. Biomarkers for in situ detection of anaerobic Ammonium-oxidizing (anammox) bacteria [J]. Applied and Environmental Microbiology 2005 7l(4): 1677 – 1684.

(上接第11694页)

[9] CHEUNG H C, WANG T BAUMANN K et al. Influence of regional pollution outflow on the concentrations of fine particulate matter and visibility in the coastal area of southern China [J]. Atmospheric Environment 2005,

- [9] KARTAL A B RATTRAY J VAN NIFTRIKA L A et al. Candidatus "Anammoxoglobus propionicus" a new propionate oxidiz-ingspecies of anaerobic ammonium oxidizing bacteria [J]. Systematic and Applied Microbiology 2007 30(1):39 –49.
- [10] LIU X C ,ZHANG Y ,YANG M ,et al. Analysis of bacterial community structures in two sewage treatment plants with different sludge properties and treatment performance by nested PCR-DGGE method [J]. Journal of Environmental Sciences 2007 4(19):60 –66.
- [11] 陶芳 黄燕 高尚 筹. PCR-DGGE 技术分析温度对 A₂/O 系统硝化菌 群结果的影响[J]. 华东师范大学学报 2009 9(5):53-62.
- [12] REN L J ,WU Y N REN N Q et al. Microbial community structure in an integrated A/O reactor treating dilutedl ivestock wastewater during start– upperiod [J]. Journal of Environmental Sciences 2010 22(5):656-662.
- [13] HELLINGA C ,SCHELLEN A J ,MULDER J W ,et al. The SHARON Process: an innorative method for nitrogen removal from and ammoniumrich wasterwater [J]. Water Sci Technol 1998 37(9):135-142.
- [14] SEN QIAO RYUICHI KANDA ,TKASHI NISHIYAMA et al. Partial nitrification treatment for high ammonium wastewater from magnesium ammonium phosphate process of methane fermentation digester liquor [J]. Journal of Bioscience and Bioengineering 2010 J09(2): 124 – 129.
- [15] 董远湘. SHARON 生物膜中微生物的多样性的研究[D]. 长沙: 湖南大 学 2006.
- [16] HONGKEUN PARK ,ALEX ROSENTHAL ,ROLAND JEZEK ,et al. Impact of inocula and growth mode on the molecular microbial ecology of anerobic ammonia oxidation (anammox) bioreactor communities [J]. Waterresearch 2010 44: 5005 – 5013.
- [17] YANG J C ZHANG L FUKUZAKI Y et al. High-rate nitrogen removal by the Anammox process with a sufficient inorganic carbon source [J]. Biore– source Technology 2010 101:9471 – 9478.
- [18] 宫正. 膜曝气生物膜反应器单级自养脱氮研究[D]. 大连: 大连理工大 学 2007.
- [19] ZHANG D ZHANG D M LIU Y P. Community analysis of ammonia oxidizer in the oxygen limited nitritation stage of OLAND system by DGGE of PCR amplified 16S rDNA fragments and FISH [J]. Journal of Environmental Science 2004 16(5):834 –842.
- [20] 董远湘 李小明,尹疆 等. 溶解氧对 OLAND 生物膜反应器硝化性能 的影响及其微生物种群动态研究[J]. 环境污染与防治 2005 27(8): 561-563.
- [21] GONG Z J.IU S T ,YANG F L et al. Characterization of functional microbial community in a membrane-aerated biofilm reactor operated for completely autotrophic nitrogen removal [J]. Bioresource Technology 2008, 99:2749 – 2756.
- [22] SUNJA CHO NAOKI FUJII TAEHO LEE et al. Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor [J]. Bioresource Technology 2011 ,102:652 - 659.
- [23] 刘强 李大平 胡杰 等. 不同有机碳与无机氨氮比(C/N) 下自养硝化 生物膜上微生物菌群的变化[J]. 四川大学学报 2008 45(3):663 – 668.
- [24] XIA S Q JJ J X ,WANG R C et al. Tracking composition and dynamics of nitrification and denitrification microbial community in a biofilm reactor by PCR-DGGE and combining FISH with flow cytometry [J]. Biochemical Engineering Journal 2010 49: 370 – 378.
- [25] 曹娴 汪国成. EM 技术在工业废水治理上的应用 [J]. 内蒙古农业科 技 2007 (4):111-113.
- [26] 刘晖 孙彦富 周康群 等. 厌氧除磷菌的富集及功能菌组成研究[J]. 安徽农业科学 2011 29(10):5976-5980.
- [27] 高慧琴 刘凌. PCR-DGGE 技术中不同 DNA 提取方法综述 [J]. 安徽 农业科学 2011 39(1):52 102.
- [28] 詹婧 孙庆业. 铜陵铜尾矿废弃地细菌多样性研究 [J]. 安徽农业科 学 2011 39(4):1660-1663 1692.

39:6463 - 6474.

[10] TUPIN B J CARY R A HUNTZICKER J J. An in-situ time resolved analyzed for aerosol organic and elmental carbon [J]. Aerosol Science Technology J990 12: 161 – 171.