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ABSTRACT

The Chinese Loess Plateau (CLP) receives and potentially
contributes to Asian dust storms that affect particulate
matter (PM) concentrations, visibility, and climate. Loess
on the CLP has experienced little weathering effect and is
regarded as an ideal record to represent geochemical char-
acteristics of Asian paleo dust. Samples were taken from
2-, 9-, and 15-m depths (representing deposition periods
from ~12,000 to ~200,000 yr ago) in the Xi Feng loess
profile on the CLP. The samples were resuspended and
then sampled through total suspended particulates (TSP),
PM,,, PM, 5, and PM, (PM with aerodynamic diameters <
~30, 10, 2.5, and 1 pm, respectively) inlets onto filters for
mass, elemental, ionic, and carbon analyses using a Desert
Research Institute resuspension chamber. The elements
Si, Ca, Al, Fe, K, Mg, water-soluble Ca (Ca®"), organic

IMPLICATIONS

Precise and representative chemical properties of dust are
necessary to quantitatively evaluate the impact of mineral
dust on the environment and climate. Efforts to obtain
chemical characteristics for Asian paleo dust are valuable
for reducing uncertainty in evaluation of the role of Asian
dust in climate and environmental change of geologic times
as well as during the modern period.
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carbon, and carbonate carbon are the major constituents
(>1%) in loess among the four PM fractions (i.e., TSP,
PM;,, PM, 5, and PM,). Much of Ca is water soluble and
corresponds with measures of carbonate, indicating that
most of the calcium is in the form of calcium carbonate
rather than other calcium minerals. Most of the K is
insoluble, indicating that loess can be separated from
biomass burning contributions when K* is measured. The
loess has elemental abundances similar to those of the
upper continental crust (UCC) for Mg, Fe, Ti, Mn, V, Cr,
and Ni, but substantially different ratios for other ele-
ments such as Ca, Co, Cu, As, and Pb. These suggest that
the use of UCC as a reference to represent pure or paleo
Asian dust needs to be further evaluated. The aerosol
samples from the source regions have similar ratios to
loess for crustal elements, but substantially different ra-
tios for species from anthropogenic sources (e.g., K, P, V,
Cr, Cu, Zn, Nj, and Pb), indicating that the aerosol sam-
ples from the geological-source-dominated environment
are not a “pure” soil product as compared with loess.

INTRODUCTION

Arid and semi-arid regions in northern and northwestern
China are among the largest dust sources in the world.
Large amounts of aeolian dust become airborne and are
transported toward the east to be deposited in East Asia
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and beyond.! Asian dust has been detected in deep-sea
sediments from the remote Pacific,? the atmosphere of the
western United States,> Greenland ice cores,* and Eu-
rope.5 Geological records trace Asian dust to 827 million
yr before present (B.P.).67 Asian dust alters radiative trans-
fer by scattering and absorbing solar and/or thermal radi-
ation.® It is also one of the main sources of water-soluble
Fe and P for ocean plankton growth and is expected to
accelerate the productivity of marine and terrestrial eco-
systems,®10 influence the carbon cycle,'' and change
greenhouse gas levels.!!

Representative chemical characteristics of dust are
needed to better evaluate the impact of suspendable dust
on the environment and climate.'>13 The Asia Pacific
Regional Aerosol Characterization Experiment (ACE-Asia)
and the Chinese Dust Storm Research Project acquired
receptor measurements of Asian outflows during dust
storms.'4-22 Surface soil from the source regions has been
collected, air-dried, size-segregated, and analyzed to ob-
tain size-specific chemical source profiles.23-25 Fine parti-
cle PM, 5 (particulate matter [PM] = 2.5 pm in aerody-
namic diameter) characterization is most useful because
PM, 5 has long residence times in the atmosphere.2¢ Lim-
ited measurements exist regarding the characteristics of
Asian paleo dust. Surface samples do not tell the whole
story, however, because suspendable Asian dust may have
differing composition with time.

The loess-paleosol (dusts formed and deposited dur-
ing geological time that may differ in chemical and phys-
ical characteristics from present-day surface dusts) se-
quence on the Chinese Loess Plateau (CLP) is a product of
Asian dust deposition,?” recording the evolution of Asian
paleo dust since the Pliocene (~22 Ma).¢ As a continental
aeolian deposit, loess has experienced little weathering
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effect and is regarded as an ideal record to represent geo-
chemical characteristics of pure Asian paleo dust.?8 Geo-
chemical studies have been conducted on the loess to
distinguish the provenance of Asian paleo dust and deci-
pher East Asian monsoon variability by using different
isotopic (e.g., Sm, Nd abundances and elemental ratios
[e.g., Zr/Rb, Rb/Sr]).2°-33 However, these previous studies
of bulk material have not examined loess properties rele-
vant to suspendable dust in the atmosphere.

This study investigated multiple trace elements, water-
soluble ions, and carbon fractions of size-segregated loess
(i.e., total suspended particulates [TSP], PM,,, PM, s, and
PM,; [PM with aerodynamic diameters < ~30, 10, 2.5, and
1 um, respectively]) through separation of bulk loess sam-
ples by suspension and sampling through size-selective
inlets onto filters followed by chemical analyses.34 Size-
differentiated chemical abundances were compared to
those from the upper continental crust (UCC) and dust-
dominated aerosol in Asian dust source regions.

METHODOLOGY

The CLP is one of the most extensive areas of loess depo-
sition in the world. It spans an area of ~440,000 km?
predominantly in the provinces of Shanxi, Shaanxi, and
Gasnu between 33° north, —40° north and 98° east —115°
east (Figure 1).! Xi Feng (35°45' north, 107°49’ east), a city
in Gansu Province, is located in the central CLP. The loess
deposit throughout the region is approximately 130 m
thick and contains more than 30 major loess units inter-
bedded with paleosol.35 Nine loess samples were collected
from three loess strata (L1LL1, L1LL2, and L2) of the
profile. Loess strata samples were obtained by digging a
20-m-deep well in the upper portion of the CLP, and
individual samples were collected with a plastic shovel in
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Figure 1. Map of China showing distributions of the CLP as well as major deserts and sand-lands. The loess sampling location is indicated

by a black dot.
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three typical loess strata. Paleosol samples were not col-
lected because they suffer from strong chemical weather-
ing after deposition and would not represent the original
dust characteristics. Age of loess deposit is determined by
correlation between the magnetism profiles and the map-
ping spectral variability in global climate project (SPECMAP)
time series.3¢ These samples are summarized in Table 1 with
their corresponding sampling depth, geological strata, and
age of the loess deposit.

Samples were air-dried at 25 °C room temperature for
1 week and sieved through Tyler 30-, 50-, 100-, 200-, and
400-mesh sieves to obtain approximately 5 g of particles
with physical diameters less than 38 pwm. Approximately
0.1 mg of sieved material was placed in a 250-mL side-arm
vacuum flask sealed with a rubber stopper. Air puffs into
the flask introduced dust into a resuspension chamber.34
Clean, filtered laboratory air was drawn into the chamber
by the sample flow of 10 L/min through each of six
channels equipped with greased PM,,, PM, 5, and PM;,
impactor inlets. TSP was collected on two channels under
the dust cap without specific size segregation. The par-
allel channels for each size fraction used 47-mm Teflon-
membrane filters (Pall Sciences) with 2-mm pore size in
channel 1 for mass and subsequent elemental analysis
and 47-mm quartz-fiber filters (Whatman Corporation,
QM/A) in channel 2 for water-soluble ions, organic car-
bon (OC), elemental carbon (EC), carbon fractions, and
carbonate carbon (CC) analyses. Teflon-membrane filters
were periodically weighed during the resuspension pro-
cess to avoid overloading; optimum loading on Teflon-
membrane filters for chemical speciation is 1-3 mg per
47-mm filter.

Teflon-membrane filter samples were equilibrated in
a relative humidity (25-30%) and temperature (21.5 *
0.5 °C) controlled environment before gravimetric analy-
sis to minimize particle volatilization and aerosol liquid
water interferences. Filters were weighed on an MT5 mi-
crobalance (Mettler-Toledo Ltd.) with a sensitivity of
+0.001 mg. Filters were exposed to a low-level radioactive

Table 1. Description of loess samples collected from the Xi Feng loess
profile at the CLP.

Depth from Age of Loess Deposit
Strata® Sample ID Surface (m) (1000 yr B.P.)"
L1LL1 ZJC-L1-0 2.2 ca.12.5 — 28.2
ZJC-L1-1 2.4
ZJC-L1-2 2.6
L1LL2 ZJC-L1-34 9 ca. 65 — 73
ZJC-L1-35 9.2
ZJC-L1-36 9.4
L2 ZJC-L2-5 14.7 ca. 125 — 198
ZLC-L2-6 15.1
ZLC-L2-8 15.5

Notes: L1LL1 and L1LL2 represent two loess horizons in Malan loess (L1)
deposited during the last glacial period; L2 represents loess deposited during
the penultimate glacial periods. °Age of loess deposit is determined by
correlation between the magnetism profiles and the SPECMAP time series.36
Paleosol samples (represented by gaps in deposit age) were not collected
because strong chemical weathering after deposition means they are non-
representative of the original characteristics of paleo dust.
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source (500 pCi of polonium-210) before and during sam-
ple weighing to remove static charge. The differences of
re-weights for unexposed and exposed filters were below
+0.010 and =0.015 mg, respectively.

Thirty-nine elements (e.g., Na, Mg, Al, Si, P, S, Cl, K,
Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Br, Rb, Sr,
Y, Zr, Mo, Pd, Ag, Cd, In, Sn, Sb, Ba, Au, Hg, Tl, Pb, and U)
were quantified on the Teflon-membrane filters with an
Epsilon 5 energy dispersive X-ray fluorescence instrument
(ED-XRF; PANalytical).3” The excitation consisted of a
gadolinium (Gd) anode tube, with Ti, Fe, Ge, Zr, Mo, Ag,
and barium fluoride (BaF,) secondary targets. Character-
istic X-ray emissions were detected by a solid-state, liquid
nitrogen (N,) cooled Ge detector. Filters were loaded (and
unloaded) into the sample holders in a high-efficiency
particulate air (HEPA) filter laminar flow hood. One of
every 10 samples was reanalyzed, and two MicroMatter
multi-element quality assurance (QA) standards (Al, Cl,
Ca, Ti, Fe, Se, Y, Mo, Ag, Sn, Ba, and W) were analyzed
each day to verify lack of instrument drift.3”

Fourteen rare earth elements (REEs; La, Ce, Pr, Nd,
Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) were analyzed
by inductively coupled plasma-mass spectrometry (ICP-
MS, Thermo Elemental, X Series). The entire Teflon filter
was sliced into eight pieces, placed in a digestion vessel,
and wetted with 0.2 mL of ethanol to counteract its hy-
drophobic tendencies. Two milliliters of a 2:1 HNO;:H,O
solution were added, followed by a 1:4 HCI:H,O solution
and 0.1 mL of Hartree-Fock (HF). The HF was needed to
dissolve strongly bound mineral oxides in most geological
samples. The capped digestion vessel was placed in a hot
block for 90 min, cooled, and brought to 50 mL total
volume with distilled-deionized water (DDW). The
capped vessels were stored overnight with the cap side
down before analysis. The ICP-MS was equipped with a
concentric nebulizer with a cooled (2-3 °C) spray cham-
ber that minimized oxide formation383 and a collision
cell chamber to reduce polyatomic interferences.4°-42 The
ICP-MS was optimized and calibrated daily for the ele-
ments of interest and maintained less than 2% oxide
formation and less than 2% double-charged ions. A cali-
bration curve from 0.001 to 500 pg/L was plotted each
day. External standards, reagent blanks, and filter blanks
were analyzed each day. Replicates, spikes, and QA stan-
dards were run at a rate of 10%.

Half of the quartz-fiber filter was extracted in DDW
and analyzed for water-soluble chloride (Cl™), nitrate
(NO; "), and sulfate (SO,%7) by ion chromatography*3; for
water-soluble sodium (Na™), potassium (K*), and calcium
(Ca*" by atomic absorption spectrophotometry (AAS);
and for water-soluble ammonia (NH,") by automated
colorimetry (AC). A 0.5-cm? punch from the remaining
half filters was analyzed for eight carbon fractions follow-
ing the Interagency Monitoring of Protected Visual Envi-
ronments (IMPROVE) thermal/optical reflectance (TOR)
protocol.#4-47 This produced four temperature-specific
OC fractions (OC1, OC2, OC3, and OC4 at 120, 250, 450,
and 550 °C, respectively, in a 100% helium [He] atmo-
sphere), a pyrolyzed carbon fraction (OP; determined
when reflected laser light attained its original intensity
after oxygen [O,] was added to the analysis atmosphere),
and three EC fractions (EC1, EC2, and EC3 at 550, 700,
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and 800 °C, respectively, in a 98% H3/2% O, atmo-
sphere). IMPROVE OC is defined as OC1 + OC2 + OC3 +
OC4 + OP, and EC is defined as EC1 + EC2 + EC3 — OP.
The CC abundance was determined by acidification of the
sample with HCIl before thermal/optical analysis with
subsequent detection of evolved carbon dioxide (CO,).48
Mass fractions (abundances) were calculated for each
measured component after blank subtraction. Uncertain-
ties for individual samples were determined by error prop-
agation of precisions derived from replicate measure-
ments and standard deviations of filter blanks.4?

RESULTS AND DISCUSSION
Chemical Characteristics for Different Size
Fractions

Table 2 compares chemical abundances for TSP, PM,,,
PM, 5, and PM; size fractions for the three sampled strata;
also listed are composite source profiles for CLP surface
dust from Cao’s earlier paper.24 Six major crustal elements
(Si, Ca, Al, Fe, K, and Mg) show abundances (>1% with
low variability). Ti and Mn abundances are in the range of
0.1-1%. Because O, was not measured, the IMPROVE
formulas® was used to estimate mineral mass as the
weighted sum of aluminum, silicon, calcium, iron, and
titanium oxides ([Soil] = 1.94 X [Ti] + 2.49 X [Si] + 2.42 X
[Fe] + 1.63 X [Ca] + 2.2 X [Al]). This reconstructed mass
accounts for 80-90% of total measured mass. Si is the
most abundant species, but it shows the greatest variation
(12-24%) among size fractions: 20-24% in TSP, 12-13%
in PM,,, and 13-15% in PM, 5 and PM,. A], Fe, K, and Mg
are more abundant in the PM, s and PM, size fractions
than in the TSP fraction. PM, 5 Al and Fe abundances are
70 and 40% higher than corresponding levels in TSP,
respectively. PM, 5 and PM; Ti and Mn abundances are
30% higher than those in TSP. REE abundances are higher
in PM, 5 and PM, than in TSP. La abundance ranges from
18 to 22 parts per million by weight (ppmw) in TSP,
which increases to 31-42 ppmw in PM;. PM Ca abun-
dances are less variable, ranging from 10 to 15%. Many
trace element abundances are close or lower than their
variability and show no consistent relationship to the size
fraction.

Cations (K*, Ca®", Na*, NH,") and anions (Cl,
NO;~, and SO,?") account for 9-13% of PM mass. Ca®**
(8-13%) is the most abundant ion, constituting 90% of
total water-soluble ions. The ratios of Ca®>*/Ca range from
0.7 to 1, indicating that most Ca is water-soluble. This
indicates that the Ca multiplier in the IMPROVE formula,
which assumes Ca, is probably incorrect because calcium
oxide (CaO) is largely insoluble. A large Ca®" abundance
is consistent with the content of modern surface dust
from the Zhenbeitai (ZBT) station in northern CLP (Figure
1).15 Water-soluble K* is the second most abundant ion
(0.1-0.4%), but this is much lower than the Ca®* abun-
dance. K" abundances increase as the size fraction de-
creases, constituting 0.10-0.17% of TSP and 0.26-0.37%
in PM,. Total K is 5-25 times the K™ abundance for all
samples, indicating that most K is not water-soluble. Be-
cause the K abundance in biomass burning emissions is
nearly all K*,51-53 Asian dust contributions can be sepa-
rated from vegetative burning using these markers. The
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remaining ionic species abundances are low, with 0.06-
0.15% for SO,?>~, 0.02-0.08% for Na*, 0.02-0.05% for
NH,™, and 0.03-0.14% for NO,. CI~ is enriched for the
larger size fractions, with TSP abundances of 0.08-0.15%
and PM; abundances of 0.04-0.08%.

Total carbon (TC = OC + EC + CC) accounts for
4-7% of measured mass. Average abundances of CC in
PM loess are 2-5%, constituting 50-80% of TC. Figure 2
shows good correlation (0.75 < r < 0.95) between
CO,? -C and Ca?* in all size fractions, with mass ratios of
CO4%7-C/Ca?* (0.2-0.29) close to the CaCO; stoichio-
metric ratio [C(12)/Ca (40) = 0.3]. CaCOg, in one of its
many mineral forms, is an important component in sur-
face as well as buried paleosols, similar to modern dust
over the CLP.54

OC constitutes 1.2-3.4% of mass, with OC/TC ratios
between 0.25 and 0.5. The main component of OC is
high-temperature (450 °C) OC3, accounting for 30-50%
of OC in all size fractions. The EC abundance is mostly
below the minimum detection limits. There is little or no
variation in the abundances of all carbon fractions among
the four size fractions.

Chemical abundances of loess PM from different
depths are similar, indicating that Asian dusts share sim-
ilar chemical profiles at least in the last two glacial and
interglacial cycles. This may be attributed to the relative
stability of the source of Asian paleo dust.

Composite profiles for nine loess samples, calculated
by averaging the chemical abundances of individual pro-
files in each size fraction, are applied to comparisons
below.

Comparisons with UCC

Elemental abundances from sampled loess were compared
with the composite reference values for the Earth’s UCCSS
in Figure 3. UCC abundances represent the average ele-
mental composition of the Earth’s surface and were usu-
ally used as a reference for pure or paleo dust. Suspendable
loess has several abundances that are similar to those of
the UCC, as indicated by ratios close to unity in Figure 3.
Most notable are Mg, Fe, Ti, Mn, V, Cr, and Ni, which
have ratios of 1-2. These elemental abundances would
not be useful for distinguishing CLP Asian dust contribu-
tions from other dust sources.

Positive deviations from unity of 2-6 are evident for
Ca, Co, Cu, As, and Pb, whereas negative deviations are
evident for Na, Si, K, P, Br, Rb, Sr, and Zr. Average abun-
dances of Mg, K, Rb, Sr, Zr, and Ba are all 50-90% of that
in UCC; Si is 30-80% of that in UCC; and Na and P are
10-20% of those in UCC. The loess Al abundance is
similar to that of UCC for the PM, 5 and PM; sizes, but it
is lower for the TSP and PM,, fractions. The Y abundance
in loess is similar to that of UCC for TSP and PM,, but it
is higher for PM, 5 and PM,. Light REE abundances (La,
Ce, Pr, and Nd) in UCC are similar to those of loess PM,,,
whereas heavy REE abundances (Ho, Er, Tm, Yb, and Lu)
in loess are similar to those of UCC for PM, s and PM;.
The differences of elemental abundances between loess
PM and UCC reflect the petrography in the source regions
of Asian dust, which is of typical abundances in CaCO;5¢
and does not exhibit the same composition as the global
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Figure 2. Relationship between carbonate carbon (CO,2-C) and water-soluble calcium (Ca®*) for the TSP, PM,,, PM, 5, and PM, fractions

of loess.

upper crust. The use of UCC as a reference to represent
pure or paleo Asian dust needs to be further evaluated.

Comparisons with Dust-Dominated Ambient
Measurements in Source Regions
Table 3 compares elemental ratios from these samples
with those measured in other Chinese source re-
gions.14-16,18-21 The ratios of crustal elements such as Mg,
Si, Fe, Ti, Mn, and Sr to Al in ambient samples are similar
to those of PM loess. Ca/Al ratios varied from 1.8 = 0.25
to 2.3 = 0.12 for the loess samples, but their variability is

2

higher in the ambient samples. The ambient Ca/Al ratio
from the Taklimakan Desert is approximately 40% higher
than the average ratios in PM loess, and they are 50-80%
lower for the other samples.

Major differences between loess and ambient sample
ratios are evident for species that might originate from
other sources (e.g., K, P, V, Cr, Cu, Zn, Ni, and Pb). The K
to Al ratio is 40-200% higher in ambient air than in PM
loess. Figure 4 shows the anthropogenic fraction of dis-
turbed or contaminated elements for PM,  of ZBT dust
aerosol reported by Arimoto et al.” More than 70% of Pb,

10° 3 -
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Figure 3. UCCS55-normalized abundances for TSP, PM,,, PM, 5, and PM, of loess. Samples for each size fraction represent the average of

nine source profiles.
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Figure 4. The percentages of crustal and non-crustal origin for
elements Pb, Zn, Cr, V, Ni, Cu, and Co of PM, 5 aerosol samples
acquired from the ZBT station.'s The fraction of non-crustal origin
(F o eructan orign’ in percent) for element X was calculated as follows:
=100 X [1 - (Alsample X )(Ioess)/(Alloess X Xsample)]-

non-crustal origin

Zn, Cr, V, Ni, Cu, and Co in ZBT aerosol were attributed to
non-crustal or anthropogenic origins. Contributions from
non-loess sources are most apparent for Pb (97%), fol-
lowed by Zn (95%), Cr (94.7%), V (91%), Ni (77%), Cu
(76%), and Co (70%). These results indicate that anthro-
pogenic activities may have disturbed or contaminated
the chemical components of aerosol in the source regions.
The modern aerosol samples from the geological source-
dominated environment are therefore not a “pure” soil
product as compared with loess.

CONCLUSIONS

The chemical composition of Asian paleo dust derived
from the CLP is similar throughout the past 198,000 yr in
geological time. The elements Si, Ca, Al, Fe, K, Mg, Ca®",
OC, and CC are the major constituents (>1%) in loess
among the four PM fractions (i.e., TSP, PM;,, PM, 5, and
PM;). Much of the calcium is water-soluble and corre-
sponds with measures of carbonate, indicating that most
Ca is in the form of CaCO; rather than other calcium
minerals. Most of the K is insoluble, indicating that loess
can be separated from biomass burning contributions
when K" is measured. The loess has elemental abun-
dances similar to those of the UCC for Mg, Fe, Ti, Mn, V,
Cr, and Ni, but substantially different ratios for other
elements (e.g., Ca, Co, Cu, As, and Pb), suggesting that the
use of UCC as a reference to represent pure or paleo Asian
dust needs to be further evaluated. The aerosol samples
from the source regions have similar ratios to loess for
Mg, Si, Fe, Ti, Mn, and Sr to Al, but substantially dif-
ferent ratios for species that might originate from an-
thropogenic sources (e.g., K, P, V, Cr, Cu, Zn, Ni, and
Pb), indicating that the aerosol samples from the geo-
logical source-dominated environment are not a “pure”
soil product as compared with loess.

As a natural atmospheric aerosol, dust plays an
essential role on the regional and global climate and
environmental changes.8-13 Attempts have been made
to simulate global dust distributions in several mod-
els.>” Size-differentiated chemical characteristics of loess

188 Journal of the Air & Waste Management Association

based on aerodynamic diameters reproduce the chemical
characteristics of Asian paleo dust, which are valuable for
reducing uncertainty in the evaluation of the role of Asian
dust in climate and environmental change of geological
times as well as in the modern period.
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