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ABSTRACT 

Air quality data collected at 8 monitoring stations located in the central Taiwan Air Quality Total Quantity Control 
District were analyzed using multivariate statistical factor analyses. Based on the results thus obtained, 2 major factors, i.e.
photochemical pollution factor and fuel factors, were selected for the purpose of evaluating their variations and the pattern 
of mutual influences for the various air pollution species with respect to time series. The evaluation was conducted using a 
vector time series coordinated with the ARCH (Autoregressive Conditional Heteroscedacity) and GARCH (Generalized 
Autoregressive Conditional Heteroscedacity) models in addition to being combined with dynamic impact response analyses 
using a multiple time series model. The results reveal that the current O3 value is affected by the PM10 values of both a one 
time lag and a two times lag, as well as the NO2 value of one time lag. When the current SO2 is produced, its concentration 
can be used to estimate the current CO concentration, and the one time lag SO2 concentration also influences the CO 
concentration. Additionally, results of impact response analyses show that current CO concentration responds to variations 
in current SO2; this indicates that the existence of SO2 due to incomplete combustion at the pollution source is immediately 
reflected by the current production of CO without lagging. In this paper, the vector time series is coupled with the (G)ARCH 
model to convert simple data series into valuable information so that raw data are better and more completely presented for 
the purpose of revealing future variation trends. Additionally, the results can be referenced by authorities for planning air 
quality total quantity control, applying and examining various air quality models, simulating the allowable increase of air 
quality limits, and evaluating the benefit of air quality improvement. 
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INTRODUCTION

The development of (time series) theory, especially for 
financial series, was pioneered by Box and Jenkins (1976), 
who proposed the ARIMA (autoregressive integrated moving 
average) model for performing series (time series), especially 
financial series analyses. The classic regression analysis 
model assumes that variables of residual values are constants 
and that the expected values for every period remain the 
same. However, the results of many studies have indicated 
the time-varying nature of sequence order variables. Hence, 
Engle (1982) proposed the ARCH (autoregressive conditional 
heteroscedasticity) model that has been further modified 
by Carson et al. (2008) to the System-GARCH Model. 
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Following Engle’s ground breaking idea, many alternatives 
have been proposed to model conditional variances, forming 
an immense ARCH family; for example, the survey of 
Bollerslev et al. (1992), and Li et al. (2002). Of these models, 
the most popular is undoubtedly the generalized autogressive 
conditional heteroskedasticity (GARCH) model of Bollerslev 
(1986). Some multivariate extensions of these models have 
been proposed: for example, Ling and Deng (1993), Engle 
and Kroner (1995), Wong and Li (1997) and Li et al. (2001). 
In most of these multivariate extensions, the primary purpose 
has been to investigate the structure of the model, as in Engle 
and Kroner (1995), and to report empirical findings. 

At present, three of the most popular models to capture 
the time-varying volatility of financial time series are the 
Generalised Autoregressive Conditional Heteroscedasticity 
(GARCH) model of Engle (1982) and Bollerslev (1986), the 
GJR (Glosten, Jagannathan and Runkle) model of Glosten et
al. (1992), and the Exponential GARCH (EGARCH) model 
of Nelson (1991). Multivariate extensions of GARCH models 
are also available in the literature, such as the Constant 
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Conditional Correlation (CCC) GARCH model of Bollerslev 
(1990), the Vector Autoregressive Moving Average GARCH 
(VARMA-GARCH) model of Ling and McAleer (2003), and 
the VARMA Asymmetric GARCH (VARMA-AGARCH) 
model of Hoti et al. (2002). 

Various studies have also used neural-networks for 
forecasting air quality (Tsai et al., 2009). Kumar and 
DeRidder (2010) took heteroskedasticity of the O3 time 
series explicitly into account to show how to forecast O3
with improved confidence intervals. Moreover, their method 
is capable of making more accurate probability forecasts of 
ozone episodes in urban areas. Some studies that compare 
forecasting performances of ARIMA and neural-networks 
have been carried out by Tang et al. (1991), Shabri (2001), 
Ho et al. (2002), and Choon and Chuin (2008) but without a 
single conclusive result. 

Numerous papers have been published on the pollution 
potential and distribution characteristics of various air 
pollutants. Zhang et al. (2010) has conducted successive 
measurements and samplings of Asian dust particles in the 
spring in Beijing since 2001. In this study, the chemical 
element composition of aerosol particles was characterized 
through the ground-based samples of size-segregated aerosols 
collected in Beijing during dust events in the spring of 
2004. Huboyo et al. (2011) investigated the characteristics 
of fine particles (PM2.5) associated with cooking, particularly 
temporal variations in the mass and number concentrations 
in a kitchen and an adjoining room. Chou et al. (2006) 
have studied the relationships among ambient levels of O3,
NO and NO2 to improve the understanding of the chemical 
coupling occurring among them. Cheng and Lin (2010) 
showed that the low PM2.5-to-PM10 ratio at the concourse 
in the Taipei main station was likely the result of coarse PM 
being re-suspended in the station concourse due to passenger 
movement. Additionally, Han et al. (2011) used O3, NO 
and NO2 concentrations to forecast the O3 concentration. 
Furthermore, the difference in concentrations between the 
weekdays and weekends, and O3 concentrations under 
different meteorological conditions were also discussed. 

In recent years, the increasing number of industrial plants, 
automobiles, and motorcycles in Taiwan has made it difficult 
to improve the air quality of regions with concentrated 
sources of pollution regardless of regulations implementing 
more stringent air quality. Hence, promoting an air quality 
total quantity control is a strategy for further improving the 
air quality in Taiwan. The Environmental Protection 
Administration (Taiwan) divides Taiwan into seven air 
quality administration districts: Northern Taiwan District, 
Hsinchu-Miaoli District, Central Taiwan District, Yunlin-
Chiayi-Tainan District, Kaohsiung-Pingtung District, 
Hualien-Taitung District, and Yilan District. Based on 
actual situations and requirements, the air quality total 
quantity limitations will be phased in for each district. The 
first plan to reduce the air quality total quantity will be 
implemented in two districts that have the worst air quality 
total quantity, i.e. the Central Taiwan District and the 
Kaohsiung-Pintung Districts. Therefore, the Central Taiwan 
District, which includes metropolitan Taichung, Changhua 
County and Nantou County, were selected for the purpose 

of conducting this study using the data collected by 8 air 
quality monitoring stations established by the Environmental 
Protection Administration (Taiwan) in these districts in order 
to carry out a multivariate statistical factor analyses. Based 
on the results, the air quality situations were categorized 
into three factors, and the two most important factors, i.e. 
the photochemical pollution factor and the fuel factor, were 
targeted for further analyses. Because dynamic variations 
exist among the various air pollution species, the second 
moment information needs to be completely grasped so that 
the tendency of time-dependent variations can be analyzed 
using the ARMA-GARCH model. Hence, patterns and results 
of the mutual influence among the various air pollution 
species can be investigated. The results will instantaneously 
reflect the response and correlation of various air pollution 
parameters and can be referenced by the government for 
review and certification of various air quality models in order 
for agencies to simulate allowable increase limits and evaluate 
the benefits of air quality improvement. 

METHODS

Selection of Air Quality Monitoring Stations 
The Taichung Thermal Power Plant located in this study 

region was completed in 1989; it is the largest CO2 emitter 
in Taiwan. With the development of the Changhua Coastal 
Industrial Park in this region, the air quality of the whole 
central region has been made worse. According to monitored 
air quality data collected by the Environmental Protection 
Administration (Taiwan), the air quality in this region is 
categorized in the third air quality protection class with 
PM10 (particulate matter with particle size below 10 microns) 
and O3 (ozone) seriously exceeding the air quality standards. 
The 8 ordinary air quality monitoring stations established 
by the Environmental Protection Administration (Taiwan) 
include: Xitun Station, Fengyuan Station, Shalu Station, 
Dali Station in municipal Taichung, Changhua Station, Erlin 
Station in Changhua County, Nantou Station, and Zhushan 
Station in Nantou County. Fig. 1 shows the geographical 
locations of these stations in the central area of Taiwan. 

Screening and Manipulation of Data 
Prior to performing GARCH simulation studies, the air 

quality data collected by the 8 air quality monitoring stations 
were first analyzed using multivariate statistical factor 
analyses to look for common factors and to investigate the 
mutual correlations among the 7 air pollution species. In 
addition to the 5 major air pollutants Standard Index (PSI) 
as published by Environmental Protection Administration 
(Taiwan), including sulfur dioxide (SO2), nitrogen dioxide 
(NO2), carbon monoxide (CO), PM10 and ozone (O3), two 
more indices, i.e. total hydrocarbon compounds (THC) and 
non-methane hydrocarbon compounds (NMHC) were added 
in this study. The air quality index (AQI) proposed by US 
EPA uses the pollution potential of these 5 major air 
pollutants to classify the degree of their influence on human 
health. In literature, many authors have investigated the 
distribution of these 5 major air pollutants in the atmosphere 
(Bhaskar and Mehta, 2010; Hussein et al., 2011). Using all  
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Fig. 1. Geographic locations of the 8 air quality monitoring stations established by the Environmental Protection 
Administration (Taiwan) in the study region. 

7 of these indices will ensure the completeness and variety 
of the air quality data used in the subsequent analyses. 
Results of factor analyses show that three factors have 
eigenvalues greater than “1”; they are the organic pollution 
factor (i.e. NMHC, THC), the photochemical pollution factor 
NO2, PM10, O3) and the fuel factor (i.e. SO2, CO). Among 
the above 3 factors, NO2, PM10 and O3, which represent the 
photochemical pollution factor, are subjected to multivariate 
statistical factor analyses. The loading degrees are 0.866 
for NO2, 0.751 for PM10, and 0.691 for O3, whereas the 
loading degrees for all other air-borne pollutants are not 
high. In the case of SO2 and CO, which are represented in 
the fuel factor, the factor loading degrees are 0.872 and 
0.754, respectively, and all other factors in the fuel factor 
are not high either. If some air pollutants in one factor have 
relatively high factor loading degrees, these pollutants have 
relatively high dependence among one another. Only the 
photochemical pollution factor and fuel factor were used to 
carry out the GARCH model simulation because the air 
pollutants included in these two factors cover the 5 air 
pollutants in the PSI published by Environmental Protection 
Administration (Taiwan). It can be surmised that using these 
two factors will fully represent the air quality pollution 

situation in the Central Taiwan District. The two air 
pollutants included in the organic pollution factor do not 
contribute significantly to air pollution problems in this 
district; they are not stipulated by the Taiwan Environmental 
Protection Administration as currently evaluated air pollutant 
standard indices either. Hence, further discussions on these 
two air pollutants are not included in this paper. 

The series of data used in this study consist of 610 sets 
collected daily by the Environmental Protection 
Administration (Taiwan) from January 1, 2010 to September 
30, 2011, and published in http://www.epa.gov.tw. During 
this period, some data were incompletely collected because 
of un-expected instrument down time for repair and 
maintenance, and all of these incomplete data sets are deleted, 
resulting in 610 complete sets of data. All statistical analyses 
were carried out with E-Views for Windows, version 6.0. 

ARIMA Modeling (Shumway and Stoffer, 2006)
A time series {xt; t = 0, ±1, ±2, ..…} is ARMA(p, q) if it 

is covariance stationary and can be represented as: 

1 1 1 1... ...t t p t p t t q t qx x x , (1) 
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where 0p , 0q , and t are the innovations with 
N(0, 2 ), and 2  > 0.) The parameters p and q are called 
the autoregressive [AR(p)] and the moving average [MA(q)] 
orders, respectively. When a time series does not appear to 
be covariance stationary, the differencing procedure may be 
applied to make it stationary. Subsequently, the ARMA(p,q) 
model can be applied to the stationary differenced time 
series; the model so constructed is called the ARIMA(p, d, q,) 
model, where d denotes the order of differencing (Shumway 
and Stoffer, 2006; Brockwell and Davis, 2002). Parameters 

 and are estimated using the maximum likelihood 
method (Brockwell and Davis, 2002) in this study. 

An inspection of both the autocorrelation function (ACF) 
and the partial autocorrelation function (PACF) assists in 
identifying the orders AR(p) and MA(q). In addition, more 
objectively defined criterions, such as the Akaike information 
criterion (AIC), the Hannone-Quinn Information Criterion 
(HIC), the Bayesian Information Criterion (BIC) and the 
Final Prediction Error (FPE) can also be used to identify the 
correct of p and q (Brockwell and Davis, 2002; Kumar et
al., 2009). 

GARCH Modeling (Kumar and De Ridder, 2010)
If values for t denote a real valued discrete-time 

stochastic process, t are the innovations of the ARMA 
process in Eq. (1). Engle (1982) defined these parameters 
as an autoregressive conditional heteroskedastic process in 
which all t are expressed as: 

t t tz , (2) 

where zt is an identically independent distributed process 
with a zero mean and unit variance. Although values for t
are serially uncorrelated by definition, their conditional 
variances equal 2

t , which might be autocorrelated and, 
therefore, may change over time. 

The variance equation of the GARCH (p, q) can be 
expressed as (Bollerslev, 1986; Aradhyula and Holt, 1988; 
Shumway and Stoffer, 2006; Brockwell and Davis, 2002): 

~ (0,1)tz D  (3) 
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where (B) and (B) are the appropriate polynomials of the 
lag operator B; D (0, 1) is the probability density function 
of the innovations or residuals with zero mean and unit 
variance; 

p  0; q  0 (6) 

0 > 0, i  0, i = 1, 2, …, q, and (7) 

i  0, i = 1, 2, …, p. (8) 

If p equals 0, the process reduces to an ARCH(q) process. 

Also, if both p and q equal 0, the conditional variance is 
constant. As in ARMA, the innovation t simply reduces to 
white noise. 

VARMA-GARCH Modeling 
Serletis and Shahmoradi (2006) proposed an extended 

version of the VARMA (vector autoregressive moving 
average)-GARCH model to simulate natural gas price 
changes (gt), and electricity price changes (et). The model 
is expressed as follows: 
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Parameters ht–j and zt–k are introduced to take the 
anticipated and unanticipated volatilities into account. 1t̂
is the error correction term from the long run cointegrating 
regression. 

Impact response Analyses Functions 
An impulse response function measures the time profile 

of the effect of shocks at a given point in time on the 
(expected) future values of variables in a dynamic system. 
The augmented vector autoregressive model is used for 
carrying out the impact response analyses: 

1

p

t i t i t t
i

w , t = 1, 2, …, T, (10) 

where Xt = (xit, x2t, …, xmt)’ is an m × 1 vector of jointly 
determined dependent variables; wt is a q × 1 vector of 
deterministic and/or exogenous variables; and { i = 1, 2, …, 
p}, and  are m × m and m × q coefficient matrices. The 
following standard assumptions are made (Lütkepohl, 1991): 

Assumption 1: E( t) = 0, E( t t') = for all t, where =
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{ ij, i, j = 1, 2, …, m} is an m × m positive 
definite matrix, E( t t')=0 for all t = t' and 
E( t|wt) = 0. 

Assumption 2: All the roots of
1

0p i
m ii

I z  fall 

outside the unit circle. 
Assumption 3: Xt–1, Xt–2, …, Xt–p, wt, t = 1, 2, …, T, are 

not perfectly collinear. 

Under Assumption 3, Xt would be covariance-stationary, 
and Eq. (10) can be rewritten as the infinite moving average 
representation: 

0 0
t i t i i t i

i i
X A G w , t = 1, 2, …, T, (11) 

where the m × m coeffcient matrices Ai can be obtained 
using the following recursive relations: 

1 1 2 2 ...i i i p i pA A A A , i = 1, 2, … (12) 

with A0 = Im and Ai = 0 for I < 0, and Gi = Ai .

Essence of Model Development 
The model used to simulate and predict the two selected 

factors was calibrated using statistical principles and methods 
in order to expound the significance of the fat tail test, the 
Ljung-Box series examination, and the ARCH examination. 

Fat Tail Test 
The investigation of time series empirical distribution 

often leads to characteristics of the fat tail test. Hence, the 
assumption of a normal distribution for the air quality data is 
not the optimal choice. An examination of the results of the 
skewness, kurtosis, and the Jarque-Bera normal distribution 
test can be used to determine whether the distribution of 
modeling errors has fat tails. 

Ljung-Box Series Examination 
The residual needs to be examined to determine whether 

it shows a sequencial correlation before evaluating the 
ARCH and GARCH models. The square of a residual that 
shows sequential correlations will have the ARCH effect. 

Examination of the ARCH Effectiveness 
Before conducting simulations using the time series

combination of the ARCH and GARCH models, the process 
of model calibration must be carried out beforehand in order 
to confirm that the residual series is not related to the first 
order series, known as white noise, to assure an appropriate 
model. Next, the residual square examination is used to 
determine whether the model has the (G)ARCH effect. In this 
paper, the Q statistics proposed by Ljung-Box are used to 
examine whether the residual has high order autocorrelation. 
Only a model that has ARCH effectiveness can be used to 
carry out iterative non-linear calculations for estimating 
model parameters. 

RESULTS AND DISCUSSION 

Evaluating the Photochemical Pollution Factor Simulation 
Model 

Photochemical pollution factors include NO2, O3, and 
PM10.

Analyses of Basic Characteristics 
Table 1 lists the basic characteristics of these 3 air 

pollutants, including average, standard deviation, skewness, 
kurtosis, and the Jarque-Bera normal distribution examination 
statistics. All data show the phenomenon of “skewed on 
right” because they have positive skewness; NO2 that has 
the highest skewness (4.86) indicates that several NO2 data 
in this series experience the phenomenon of sudden increase. 
In contrast, PM10 has a relatively low skewness of only 0.86 
because the central air quality total quantity control district 
is located near two major air pollution sources, i.e. the 
Taichung Thermal Power Plants and the Changhua Coastal 
Industrial Park, causing higher PM10 concentration and the 
resulting air pollution problem. This district has a relative 
higher PM10 concentration during winter, so the skewness is 
not quite significant. The O3 skewness of 3.89 also indicates 
that O3 is a major species that causes air pollution; however, 
the number of days for relatively higher O3 is relatively 
lower than that for relatively higher PM10 as indicated by 
the relatively higher PM10 skewness as opposed to that of 
O3. As for NO2, the original data indicate that it is higher 
only during specific periods in winter and early spring; its 
contribution to air quality problem is relatively insignificant, 
as shown by its high skewness. All three pollution factors 
have kurtosis values greater than the kurtosis value of 3 for 
a normal distribution; hence, the data series have the 
characteristics of seasonal series. Additionally, the statistical 
results from examining the Jarque-Bera normal distribution 
show that the 5% significance level is greater than the critical 
value (degree of freedom = 2 and 2

0.05,2 5.99). This 
observation rejects the hypothesis of normal distribution. 
All three air pollution factors show the characteristics of 
double fat-tails, indicating that the data series is actually 
influenced by seasons. 

Ljung-Box Series Examination 
Results of using the Ljung-Box method to perform 

series examinations are listed in Table 2. All examination 
statistical values for L-B-Q(K) are smaller than the critical 
value so that the critical value so that null hypothesis, 
which does not conform to the alternative hypothesis, and 
therefore, cannot be rejected. This indicates that series 
residuals conform to white noise because they do not show 
serial correlations, indicating that the model disposition is 
quite adequate. 

Examination of the ARCH Effect 
Whether the ARCH effect exists in a series can be 

examined using the LM (Lagrance Multiplier) statistical 
quantity, which is expressed as LM, in which T is the number 
of samples, and R2 is the determination coefficient of the 
results obtained by using the OLS (Ordinary Least Squares) 
regression. T × R2 obeys the chi-square distribution that has 
a P degree of freedom. When the LM statistical value is
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Table 1. Basic statistical characteristics of the various photochemical pollution factors. 
 NO2 (ppb) O3 (ppb) PM10 ( g/m3)

Mean 58.68113 32.78390 119.6294 
Median 56.16000 28.61000 115.7270 

Maximum 497.9000 398.2500 458.1804 
Minimum 0.150000 0.150000 1.023000 
Std. Dev. 47.70383 27.33519 55.85025 
Skewness 4.860983 3.896530 0.864264 
Kurtosis 38.50992 37.17446 4.89193 

Jarque-Bera 140196.8 136704.4 634.2893 
Probability 0.000000 0.000000 0.000000 

Sum Sq. Dev. 4778877. 1569147. 6550427. 
Observations 610 610 610 

Table 2. Determination of Ljung-Box series correlation for the various photochemical pollution factors. 

L-BQ(K) NO2 O3 PM10 Critical value 2
(0.05, )kx

1 0.68 0.32 0.28 3.84 
2 1.74 1.06 1.33 5.99 
3 4.01 2.50 2.86 7.82 
4 5.43 4.90 4.01 9.49 
5 6.67 6.72 5.42 11.07 
6 7.19 7.90 5.98 12.59 
7 7.72 9.12 7.17 14.07 
8 8.11 10.03 7.86 15.51 
9 9.54 10.74 8.55 16.92 

10 10.92 12.77 10.08 18.31 
16 14.55 16.58 12.91 26.30 
20 22.18 23.14 16.80 31.41 
24 25.17 27.53 23.22 36.42 

Note: Rt = c + Rt–1 + t;  = 0.05. 

higher than the 5% significance level, the series shows the 
ARCH effect. The statistical results of the three selected 
air pollutants shown in Table 3 reveal that all T × R2 values 
are greater than the 5% significance level and that the 
conditional variances of all three parameters have a strong 
ARCH effect. Hence, using the ARCH effect to explain the 
photochemical pollution factor is quite appropriate. 

Selecting ARCH and GARCH Models 
The vector model EACF paired with various combinations 

of the ARCH and GARCH models has been tested in order 
to select the most appropriate VARMA(p,d,q)-GARCH(p,q) 
model for carrying out the simulation analyses. Table 4 lists 
the results; the VARMA(2,0,1)-GARCH(2,1) combination 
is selected because it has the lowest AIC and SC values. 
Table 5 shows the evaluation of parameters used in the 
VARCH(2,0,1)-GARCH(2,1) model. 

Simulation Results 
Table 5 shows the resulting equations and other relevant 

information obtained by carrying out the VARCH(2,0,1)-
GARCH(2,1) model simulation. It indicates that when the 
current PM10 is produced, the current O3 concentration 
cannot be estimated based on the PM10 concentration because 
the b0 t-statistic of 1.29 is less than 1.96, indicating a lack 
of significance. However, the one time lag and two times 

Lag PM10 concentrations do appear to influence the 
formation of O3 concentrations. The t-statistic values of b1
for the one time lag PM10 (2.56), and b2 for the two times 
lag PM10 (1.99) are greater than 1.96; both indicating 
significance. Although some environmental engineering 
textbooks suggest that the production of PM10 is not directly 
related to the production of O3, Chou (2010) has pointed 
out that the secondary aerosols of photochemical reactions 
cause high levels of atmospheric PM2.5 and PM10 in 
Taiwan. Additionally, atmospheric PM10 includes primary 
and secondary aerosols, and the secondary aerosols may be 
classified as either secondary inorganic aerosols or secondary 
organic aerosols. Chen and Lee (1999) and Chang and Lee 
(2007) have observed that secondary organic aerosols and 
photochemical reactions of VOCs are closed related to the 
formation of atmospheric O3. Based on these statements, 
the production of PM10 should be closely related to the 
photochemical reactions characteristic of atmospheric 
pollutants. In this research, the model simulation results also 
reveal that the one lag time atmospheric PM10 concentration 
is actually related to the prediction of O3 concentration. Thus, 
the relationship between atmospheric PM10 concentration and 
O3 production has been confirmed by measured and simulated 
data. As for NO2, its current concentration cannot be used 
to predict the current O3 concentration (c0 t-statistic of 1.00 
is less than 1.96, indicating a lack of significance). However,
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Table 3. Results of ARCH(q) effect examination for the various photochemical pollution factors. 
Q

(lagged variables) 
NO2

(TR2)
O3

(TR2)
PM10
(TR2)

Critical value 2
(0.05, )kx

1 147.04 6.31 547.88 3.84 
2 193.42 8.22 570.86 5.99 
3 196.35 10.70 575.10 7.82 
4 198.40 21.17 625.11 9.49 
5 208.36 23.92 630.08 11.07 
6 247.73 23.01 635.77 12.59 
7 290.55 24.98 633.39 14.07 
8 329.81 24.74 636.50 15.51 
9 340.02 28.86 639.23 16.92 

10 380.57 30.03 637.62 19.68 
Note: All T × R2 values are greater than 5%, indicating "significance". 

Table 4. Results of VARMA-GARCH examination for the various photochemical pollution factors. 
GARCH 

VARMA 
ARCH(1) ARCH(2) GARCH(1,1) GARCH(2,1) 

AIC SC AIC SC AIC SC AIC SC 
VARMA(1,0.0) 9.084 9.099 9.048 9.079 9.059 9.078 9.062 9.073 
VARMA(2,0,0) 9.056 9.075 9.046 9.070 9.044 9.057 9.012 9.035 
VARMA(0,0,1) 9.148 9.159 9.143 9.162 9.145 9.164 9.146 9.167 
VARMA(1,0,1) 8.988 9.007 8.978 9.003 8.971 8.990 8.972 8.986 
VARMA(2,0,1) 8,991 9.017 8.975 8.989 8.963 8.992 8.943 8.970 

Table 5. Parameters obtained using the combined vector model and GARCH(2,1) models for the various photochemical 
pollution factors. 

 a0 a1 a2 b0 b1 b2 c0 c1 c2 d1 0 1 2 1
VARMA(1,0,0) 

t-statistic 
1.61 

14.73 
0.65
0.38

0.05 
4.94 

0.17
1.23

0.01
1.20

–0.12
0.79

11.98 
16.66 

0.17 
5.96 

0.21
1.23

0.38
–0.16

VARMA(2,0,0) 
t-statistic 

1.91 
0.38 

0.43
–1.45

–0.32 
0.56 

0.05 
6.98 

1.43
–0.08

0.99
1.09

0.01
1.29

1.52
–1.00

–1.33
2.31

6.00 
28.7 

0.12 
0.32 

0.52
0.75

0.31
12.4

VARMA(0,0,1) 
t-statistic 

1.05 
0.33 

0.10 
0.54 

0.02
0.02

0.34
22.9

4.4 
7.16 

0.38 
27.39 

–0.35
–22.0

0.93
1.39

VARMA(1,0,1) 
t-statistic 

2.65 
9.45 

0.96
–1.56

0.05 
6.97 

0.43
1.02

0.01
1.20

2.51
–1.87

–0.7
–4.42

6.68 
25.43 

0.25 
5.40 

0.49
1.70

0.26
–1.12

VARMA(2,0,1) 
t-statistic 

3.30 
7.21 

1.18
37.5

–0.19 
–0.87 

0.05 
1.29 

1.02
2.56

0.53
1.99

–0.01
1.00

0.36
2.05

0.51
1.45

6.01 
27.86 

0.23 
4.57 

0.52
11.41

0.27
11.50

O3 = ao + a1O3(t–1) + a2O3(t–2) + b0PM10(t) + b1PM10(t–1) + b2PM10(t–2) + c0NO2(t) + c1NO2(t–1) + c2NO2(t–2) + d1 t–1. 

ht = 0 + 1
2

1t  + 2
2

2t  + 1ht–1.

the one time lag NO2 concentration influences the formation 
of O3 (c1 t-statistic of 2.05 is greater than 1.96, indicating 
significance), whereas the two times lag NO2 concentration 
becomes insignificant (c2 t-statisticof 1.45 is less than 1.96, 
indicating a lack of significance). The above analyses indicate 
that the current O3 concentration is affected by the one time 
lag and two times lag PM10 concentrations as well as the one 
time lag NO2 concentration. A possible explanation for this 
is that the emission of PM10 and NO2 to the atmosphere 
after they are generated by polluting activities will not lead to 
immediate photochemical reactions; they are subject to a 
photochemical reaction in order to produce O3 only during 
the one time lag and two times lag. PM10 may stay in the 
atmosphere for a long time (Chou, 2010); however, through 
photochemical reaction mechanisms, it will cause the 
production of O3 even after the two times lag. Hence, the 

proceeding of photochemical reactions behind the time when 
the pollutants are emitted into atmosphere by one time lag or 
even two times lag. The two times lag PM10 concentration 
is capable of affecting the formation of the current O3, and 
the one time lag NO2 concentration will affect the formation 
of current O3. O3 concentration is influenced by its own one 
time lag concentration (the a1 t-statistic of 37.5 is greater than 
1.96, indicating significance), but it is not quite influenced 
by its own two times lag concentration (the a2 t-statistic 
of –0.87 is less than 1.96, indicating a lack of significance). 
Hence, the current O3 concentration is influenced by its own 
one time lag concentration but not its own two times lag 
concentration.

Analyses of Impact Responses 
The AIC (Akaike Information Criterion) proposed by 
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Akaike (Posada and Buckley, 2004) is used in this paper 
for selecting appropriate lagged variables: 

AIC(m) = T × ln(SSR/T) + 2m, 

where m is the number of variables in a model; T is the 
number of samples; SSR is the sum of error squares. 

The AIC of lagged variables are first tested in order to 
select the one with the smallest AIC value as the most 
appropriate lagged variable to be used as the basis for 
subsequent analyses. The results of analyzing lagged variables 
listed in Table 6 show that the lagged variables of the 
eighth period have the smallest AIC, so these lagged variables 
are selected for carrying the impact response analyses in this 
study. Fig. 2 shows the responses to one-unit variations of 
the two photochemical air pollution parameters. Mark “1” 
on the X-axis represents “current”, and mark “2” represent 
“lag one time”. The Y-axis represents the degree of influence 
by the production or concentration change of an air pollutant 
on the “current” or “lag one time” concentration of another 
air pollutant. 

Fig. 2(A) shows responses of PM10 and NO2 to variations 
in O3. When O3 varies, the current PM10 and NO2 show 
responses; this indicates that the involvement of PM10 and 
NO2 in photochemical reactions will lead to the production 
of O3, so the O3 concentration is influenced by PM10 and 
NO2. Therefore, the variation of O3 concentration can be 

Table 6. AIC values of the lagged variables for the various 
photochemical pollution factors. 

Lag items AIC 
1 –3.56 
2 –4.03 
3 –4.21 
4 –3.98 
5 –4.43 
6 –3.90 
7 –4.47 
8 –4.73*

9 –3.92 
10 –4.08 
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Fig. 2. Analyses of impact response for the various photochemical pollution factors. 
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generally determined based on concentrations of PM10 and 
NO2. As for O3, it is affected by its own one time lag 
concentration; hence the current O3 shows response when 
the current variation occurs; the influence of the two times 
lag becomes less and less over time. 

Responses of O3 and NO2 to variations in PM10 are shown 
in Fig. 2(B). The current O3 does not show any response to 
the initial variation of current PM10 until after the one time 
lag; this is similar to the simulated results. As discussed in 
the above simulation results section, secondary aerosols 
produced by photochemical reactions cause high PM2.5 and 
PM10 levels in the atmosphere of Taiwan. Additionally, the 
one lag time PM10 is sufficient to predict and influence the 
atmospheric ozone concentration. Afterward, the O3
concentration is affected by PM10. Fig. 2(B) also show 
significant responses of current PM10 to its one lag time; the 
current PM10 responds immediately to the production of 
the current PM10.

Fig. 2(C) showing the responses of O3 and PM10 to 
variations in NO2 indicates that the current O3 or PM10
does not have responses to the variations of current NO2.
When NO2 is produced by polluting activities, the current 
O3 concentration cannot be estimated based on NO2
concentration until after a one time lag. The figure also 
reveals that NO2 has significant response to its own lag 
time; the current NO2 responds immediately to variations 
in its own lag period. 

Investigating the Simulation of Fuel Factor 
The fuel factors include two air pollutants, i.e. SO2 and 

CO.

Analyses of Basic Characteristics 
The basic characteristics of statistical parameters such as 

average, standard deviation, skewness and the Jarque-Bera 
normal distribution of these two air pollutants are listed in 
Table 7. All skewness values are positive so that they skew 
on the right, indicating that several data in the series show 
the phenomenon of sudden increase. The presence of high 
PM10 and O3 in the atmosphere is the major cause of 
deteriorating air quality, whereas high concentrations of 
SO2 and CO cause very few days of deteriorating air 
quality problems. Hence, unlike the skewness of 0.86 for 
PM10, the listed skewness of 3.89 for O3 is somewhat low. 
In this research, the skewness values are found to be 5.71 
for SO2, and 17.94 for CO. The kurtosis values are 36.82 
for SO2 and 568.98 for CO; both values are greater the 
maximum coefficient of 3 for a normal distribution. This 
indicates that these two air pollutants have characteristics of 
time-dependent series. As for the statistics from the Jarque-
Bera normal distribution examination, the 5% significance 
level for both air pollutants are greater than the critical 
value, with a degree of freedom of 2 ( 2

0.05,2 5.99). Hence, 
the hypothesis that these two series reject the normal 
distribution indicates the characteristics of double fat-tail. 
In other words, concentrations of both SO2 and CO are 
significantly influenced by seasons in addition to being 
time-dependent so that different concentrations are 
observed. 

Table 7. Basic statistical characteristics of the various fuel 
factors.

 SO2 (ppb) CO (ppm) 
Mean 26.32675 1.32490 

Median 20.87646 1.27805 
Maximum 330.8790 27.76435 
Minimum 0.176587 0.01 
Std. Dev. 23.76512 0.77051 
Skewness 5.711058 17.94632 
Kurtosis 36.82414 568.9841 

Jarque-Bera 111964.6 273049.13 
Probability 0.000000 0.000000 

Sum Sq. Dev. 1268060 1183.646 
Observations 610 610 

Examination of the Ljung-Box Series 
The results of the Ljung-Box Examination shown in Table 

8 reveal that all L-B-Q(K) examination results are smaller 
than the critical values. Hence, the null hypothesis cannot be 
rejected, indicating that the residual for either series does not 
have sequential correlations. This observation conforms to 
the phenomenon of white noise so that the model disposition 
is quite appropriate. 

Examination of ARCH Effect 
Table 9 shows the results of examining the ARCH effect; 

both the conditional variance values for SO2 and CO show 
the ARCH effect as seen by all T × R2 values being less 
than the 5% significance level that indicates significance. 
Hence, the ARCH effect is appropriate for explaining the 
fuel factor. 

Selecting the ARCH and GARCH Models 
Table 10 lists the testing results of using the EACF vector 

model combined with various combinations of the ARCH 
and GARCH models for evaluating the fuel factors in order to 
select the most appropriate combination of models. Both the 

Table 8. Determination of Ljung-Box series correlation for 
the various fuel factors. 

L-BQ(K) SO2 CO 
Critical value

2
(0.05, )kx

1 0.26 0.78 3.84 
2 0.74 0.90 5.99 
3 2.33 1.23 7.82 
4 5.00 3.34 9.49 
5 5.97 5.09 11.07 
6 7.12 6.37 12.59 
7 7.80 8.06 14.07 
8 8.87 10.02 15.51 
9 10.14 11.28 16.92 

10 13.92 12.98 18.31 
16 15.16 16.11 26.30 
20 21.58 19.95 31.41 
24 25.21 22.99 36.42 

Note: Rt = c + Rt–1 + t;  = 0.05. 
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Table 9. Results of ARCH(q) effect examination for the 
various fuel factors. 

Q
(lagged variables) 

SO2
(T × R2)

CO
(TR2)

Critical value
2
(0.05, )kx

1 15.21 8.56 3.84 
2 20.58 14.87 5.99 
3 38.95 26.80 7.82 
4 51.12 27.64 9.49 
5 57.13 30.97 11.07 
6 66.30 33.78 12.59 
7 95.91 34.55 14.07 
8 152.14 37.12 15.51 
9 162.17 40.00 16.92 

10 164.66 43.53 19.68 
Note: All T × R2 values are greater than 5%, indicating 
"significance". 

AIC and SC values for the VARMA(1,0,1)-GARCH(1,1) 
combination are the smallest; hence, the VARMA(1,0,1)-
GARCH(1,1) combination is considered the most appropriate. 
Values of the various estimated parameters for the most 
appropriate VARMA(1,0,1)-GARCH(1,1) model are listed 
in Table 11. 

Simulation Results 
Table 11 shows the resulting equations and relevant 

results of carrying out the VARCH(1,0,1)-GARCH(1,1) 
model simulation. It indicates that when the current SO2 is 
produced, the SO2 concentration can be used for estimating 
the current CO concentration because the b0 statistic of 11.88 
is greater than 1.96, indicating significance. Additionally, the 

one time lag SO2 concentration also influences the current 
CO concentration as evidenced by the b1 statistic of 5.47 
exceeding 1.96, to indicate significance. These observations 
can be explained based on the incomplete combustion of 
fuel that leads to emission of SO2 from industries and 
vehicles. The incomplete combustion, which is much faster 
than photo-oxidation reactions, causes the current CO. 
Additionally, the one time lag SO2 concentration also 
influences the current CO because SO2 in the atmosphere 
is not involved in photochemical reactions; thus, it does not 
affect CO formation after its release into the atmosphere. 
Additionally, CO in the atmosphere is not easily dispersed 
so that its accumulated concentration is rather high. The CO 
itself is also affected by its own one time lag because the 
a1 statistic of 25.68 is greater than 1.96, which indicates 
significance. However, the current CO concentration is not 
significantly influenced by the two times lag value (a2
statistic of –1.38 being less than –1.96 in a positive number 
indicates a lack of significance. 

Analyses of Impact Responses 
The analyses results for the lagged variables are listed in 

Table 12. The fourth term lagged variables having the 
lowest AIC value are selected for carrying out the impact 
response analyses for the fuel factor. Fig. 3 displays the 
impact responses for these two air pollutants to one unit 
variation. 

Fig. 3(A) shows the impact response for SO2 to variations 
of CO; the current SO2 shows immediate response to 
variations in current CO. This indicates that the production 
of CO is mainly caused by incomplete combustion of SO2-
containing fuel that leads to an increase of atmospheric CO 
concentration. This conclusion is similar to the simulated

Table 10. Results of the VARMA-GARCH examination for the various fuel factors. 
ARCH

VARMA 
ARCH(1) ARCH(2) GARCH(1,1) GARCH(2,1) 

AIC SC AIC SC AIC SC AIC SC 
VARMA(1,0.0) 1.302 1.317 1.889 1.903 1.311 1.298 1.470 1.486 
VARMA(2,0,0) 1.260 1.277 1.216 1.230 1.202 1.231 1.582 1.599 
VARMA(0,0,1) 1.435 1.473 1.399 1.404 1.420 1.427 1.405 1.423 
VARMA(1,0,1) 1.222 1.238 1.180 1.199 1.159 1.178 1.179 1.192 
VARMA(2,0,1) 1.231 1.249 1.857 1.883 1.176 1.190 1.175 1.194 

Table 11. Parameters obtained using the combined vector model and GARCH(2,1) models for the various fuel factors. 
 a0 a1 a2 b0 b1 b2 d1 0 1 2 1

VARMA(1,0,0) 
t-statistic 

0.88 
17.1 

0.84 
1.56 

1.08 
2.01 

0.004
–0.65

0.05 
43.1 

4.76 
3.45 

0.02 
0.51 

3.23 
3.90 

VARMA(2,0,0) 
t-statistic 

1.01 
5.46 

1.13 
6.89 

–0.28 
–37.38 

0.003
–1.12

1.24 
0.98 

5.67 
–0.07

0.04 
27.9 

3.41 
–5.23 

0.04 
4.73 

0.96 
–1.91

VARMA(0,0,1) 
t-statistic 

1.11 
15.2 

0.003
27.78

0.64 
2.51 

0.04 
–2.64 

3.03 
1.54 

0.06 
–6.76

5.23 
18.71

VARMA(1,0,1) 
t-statistic 

1.03 
2.67 

0.80 
25.68 

–0.11 
–1.38 

0.16 
11.88

0.32 
5.47 

0.36 
4.55 

–0.04 
6.92 

2.96 
–1.28 

–3.56
–13.4

2.89 
1.97 

VARMA(2,0,1) 
t-statistic 

1.04 
–2.16 

0.66 
30.12 

2.56 
1.06 

0.003
1.90 

12.34
5.56 

–2.41
–0.03

0.04 
26.45

0.04 
–0.09 

2.98 
3.56 

0.04 
–3.98

–2.34
0.06 

CO = ao + a1CO(t–1) + a2CO(t–2) + b0SO2(t) + b1SO2(t–1) + b2SO2(t–2) + d1 t–1.
ht = 0 + 1

2
1t  + 2

2
2t  + 1ht–1.
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Table 12. AIC values of the lagged variables for the various 
fuel factors. 

Lag items AIC 
1 –5.89 
2 –6.71 
3 –8.02 
4 –8.56*

5 –7.92 
6 –8.14 
7 –6.57 
8 –7.00 
9 –6.93 

10 –6.88 

results shown in previous paragraphs that indicated that 
when the current SO2 is produced, the SO2 concentration 
can be used to estimate the current CO concentration. Fig. 
3(A) also reveals that CO is significantly affected by the 
current CO and the one time lag CO concentrations. 

Fig. 3(B) shows the impact response for CO to variations 
in SO2; the current CO shows a response when variations in 
SO2 occur. This indicates that the incomplete combustion of 
SO2 will lead to the production of current CO with lagging 
The figure also shows SO2 obviously responds to the 
current and one time lag concentrations so that when the 
current variation occurs, the current concentration responds 

with a significant influence even on one time lag or two 
time lag concentrations. It can be seen in Table 5 that the 
b1 statistics for the one time lag SO2 of 2.56 is greater than 
1.96. 

CONCLUSIONS 

The factor analyses carried out using the multivariate 
statistical analysis in this research leads to the selection of 
two relatively important factors, i.e. the photochemical 
pollution factor and the fuel factor because the air pollutants 
contained in these two factors cover the 5 air pollutants in 
the air pollution indices promulgated by the Environmental 
Protection Administration (Taiwan). Results obtained by 
using these two factors will therefore fully reflect the air 
quality conditions for the Central Taiwan Air Quality Total 
Quantity Control District. 

The analysis results show that PM10 has a low skewness 
of 0.86 because PM10 is the major air pollutant in the 
Central Air Quality Total Quantity Control District. Hence, 
higher PM10 concentration leads to more serious air pollution 
especially during the winter time when the atmospheric PM10
increases. Additionally, the model simulation results reveal 
that the current O3 concentration is influenced by the first 
time lag and the two time PM10 concentrations as well as the 
one time lag NO2 concentration. In other words, the current 
O3 concentration is influenced by the previous PM10 and
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NO2 concentrations. When the current SO2 is produced, the 
current CO concentration can be estimated based on the SO2
concentration, and the current CO concentration is influenced 
by the one time lag SO2 concentration. 

Results of impact response analyses show that O3
concentration does not respond to variations in current O3
and NO2 concentrations until after the one time lag. When 
PM10 and NO2 are produced, their concentrations cannot be 
used for predicting the immediate current O3 concentration 
until the one time lag is reached. The SO2 concentration 
responds to the variations in the current CO, indicating that 
the production of CO is caused by incomplete combustion 
of SO2-containing fuel, thus increasing CO concentration. 
Responses of CO concentration to changes in current SO2
concentration also indicate that during incomplete 
combustion, SO2 leads to the production of current CO 
without lagging. 

The integrated VARMA-GARCH model used in this 
research is capable of evaluating the degree of instantaneous 
variations of each air pollutant in the air quality total 
quantity control district. Its implementation is expected to 
improve the model simulation results significantly by 
considering the heteroscedastic characteristics of data series 
that have been ignored in previous research. In this paper, 
the vector time series is coupled with the (G)ARCH model 
to convert simple data series into valuable information so 
that raw data are better and more completely presented for 
the purpose of revealing future trends in variation. 

As mentioned earlier, the classic regression analysis 
model assumes that variables of residual values are 
constants and that the expected values for every period 
remain the same. However, the results of many studies 
indicate the time-varying nature of sequence order variables. 
These observations have been confirmed in various fields 
such as economics, banking and financing, but not in 
environmental engineering applications. The authors are 
currently conducting empirical research intended to verify 
the subject in question with experimental data, and we will 
publish the results in the near future. 
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