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ABSTRACT 

Real-time aerosol black carbon (BC) data, presented at time resolutions on the order of seconds to minutes, is desirable 
in field and source characterization studies measuring rapidly varying concentrations of BC. The Optimized Noise-
reduction Averaging (ONA) algorithm has been developed to post-process data from the Aethalometer, one of the widely 
used real-time BC instruments. The ONA program conducts adaptive time-averaging of the BC data, with the incremental 
light attenuation ( ATN) through the instrument’s internal filter determining the time window of averaging. Analysis of 
instrument noise and the algorithm performance was conducted using Aethalometer 1-second data from a soot generation 
experiment, where input BC concentrations were maintained constant and an optimal ATNmin value was defined. The 
ONA procedure was applied to four additional data sets (1 s to 5 min data), including cookstove emissions tests, mobile 
monitoring, continuous near-road measurements, and indoor air sampling. For these data, the algorithm reduces the 
occurrence of negative values to virtually zero while preserving the significant dynamic trends in the time series.  
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INTRODUCTION

Atmospheric black carbon (BC) is an important indicator of 
combustion emissions in ambient or indoor environments, 
may have direct impacts on health (e.g., Driscoll et al., 
1996; Stoeger et al., 2006), and has been highlighted as a 
significant forcing agent for climate change (e.g., 
Ramanathan and Carmichael, 2008). Field studies around 
the world quantify atmospheric black carbon through two 
general approaches – off-line measurements where a sample 
is collected onto a filter and then measured in a laboratory 
setting; and online measurements where BC is continuously 
measured and reported on a time base of seconds to 
minutes. Online measurements are critical to research studies 
characterizing short-term variability in BC, such as 
measuring source emissions that change rapidly, quantifying 
outdoor air pollution levels while moving on a mobile 
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platform or lofted in a balloon, comparing time-varying 
indoor air pollution levels with health indicators, or 
observing dynamic trends in ambient air quality.  

Among the current approaches available to measure BC in 
an online fashion, filter-based optical techniques such as the 
AethalometerTM (Magee Scientific), multi-angle absorption 
photometer (MAAP, Thermo Scientific), and the particle 
soot absorption photometer (PSAP, Radiance Research) 
are in widespread use due to their ease of operation, 
relatively low cost, and established development history. 
Recent innovations on the Aethalometer have extended the 
range of BC measurement applications, with new models 
(AE42, AE51) providing greater portability by reducing 
the instrument size and operating from internal battery 
power. Portable BC instruments have been carried by 
volunteers or placed in homes to conduct personal exposure 
monitoring, lofted in a balloon to perform vertical-profile 
sampling (Babu et al., 2011), and used on-board mobile 
sampling vehicles to measure in-cabin or outdoor air quality 
(Beckerman et al., 2008; Kozawa et al., 2009; Wang et al.,
2009).  

One challenge facing BC measurements via filter-based 
techniques is measurement sensitivity. Filter-based optical 
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techniques all operate by the same general principal – 
continuously drawing the particle-containing airstream 
through a filter while simultaneously measuring the 
attenuation of light (usually monochromatic) transmitted 
through the filter. The incremental change in light passing 
through the filter over a sample period (ti to ti+1) is directly 
converted to a BC concentration through numerical factors 
specific to each instrument. The measurement sensitivity is 
thus directly related to the loading rate of light-absorbing 
particles on the filter matrix, which is a function of sample 
BC concentration, air flow rate, and the size of the 
deposition area (“sample spot size”) on the filter. The 
Aethalometer, which is the specific focus of this study and 
is widely used by the aerosol research community, bases its 
measurement on the relationship between the light 
attenuation value (ATN) and the surface density loading of 
BC particles on the filter (Hansen et al., 1984). While ATN 
should always be increasing, when sampling at very high 
data rates (e.g., 1 second) or in air streams of very low BC 
concentrations, the presence of instrumental optical and 
electronic noise can lead to periods when ATN values 
remain unchanged or even slightly decreased from one 
time period to the next. Because the calculation is based on 
successive differences, this noise may create an erroneous 
low values at one time point followed by a subsequent 
erroneous high value at the next; or vice versa. In 
situations where the true BC concentrations are relatively 
low compared to the magnitude of the noise, the instrument 
can report negative data. 

Users of Aethalometer instruments who seek very high 
time-resolution data are often challenged by the occurrence 
of negative values in their BC data sets, which can occur at 
high frequency (e.g., >30%) when sampling at low 
concentrations and at a high time resolution. The simple 
removal of negatives is an inappropriate action to take, as 
this would disregard the corresponding positive 
fluctuations due to noise and would bias the final data high. 
While averaging the data over a longer period of time (e.g., 
hourly) generally reduces the noise in the signal, this can 
compromise the need for high time resolution data. There 
are numerous post-processing strategies that could be 
employed to reduce the noise in BC data, including a 
moving average (simple, weighted, exponential) or advanced 
mathematical techniques to separate the noise and 
reconstruct the time series (Kostelich and Schreiber, 1993 
and references therein). However, these approaches do not 
take advantage of the additional information available in 
the ancillary data provided by the Aethalometer – namely, 
the light attenuation (ATN) values that relate to the internal 
loading rate of the filter – as well as knowledge on the 
successive difference nature of the Aethalometer.  

The ONA method developed in this study is a simple 
approach to resolve the noise of real-time data from 
Aethalometer instruments, while maintaining the highest 
time resolution possible in the data set by dynamically 
adjusting the competing factors of averaging time versus 
noise. The post-processing algorithm was developed and 
tested using Aethalometer data collected from multiple 
measurement applications, including a soot generator, 

cookstove emission tests, indoor air sampling, outdoor 
near-road sampling, and sampling outdoor air while 
driving on a mobile platform. The approach presented in 
this manuscript may generally translate to other filter-
based techniques – for example, a study in the remote 
Arctic applied a similar post-processing procedure to data 
from a PSAP – however the noise reduction performance 
and optimal selection of averaging timeframes were not 
determined (Hagler et al., 2007). This proposed post-
processing algorithm does not correct for filter-loading 
artifacts, in which the scattering of light by the particles 
embedded in the filter biases subsequent measurements 
(Weingartner et al., 2003; Arnott et al., 2005; Schmid et al., 
2006; Virkkula et al., 2007; Coen et al., 2010; Park et al.,
2010). While this study does not include a filter-loading 
artifact correction scheme into the post-processing 
algorithm, the approach presented here could be used in 
conjunction with a filter-loading correction if desired by 
the user. 

METHODS

This study analyzed BC data collected from multiple 
measurement projects that utilized various Aethalometer 
models (AE21, AE42, and AE51, Magee Scientific) 
operating at time resolutions from 1 second to 5 minutes 
(Table 1). Key data for the analysis of noise reduction 
strategies were from a diffusion flame burner emissions 
experiment (SootGen), which kept a nearly constant BC 
concentration input to a “micro” Aethalometer (model 
AE51) and also had condensation particle counter (CPC, 
TSI) data collected at a high time resolution. A view of this 
data set reveals the irregular and high-amplitude 
fluctuations in the 1-second BC data, while the CPC data 
and the BC data if averaged at a 1-minute resolution 
confirm that the input concentrations were nearly constant 
(Fig. 1). Additional data sets used for testing purposes 
included 1-second sampling of biomass-burning cook stove 
emissions (Stove) for a two hour time period, 1-second 
sampling of BC levels on arterial roads and highways 
using a mobile platform (Mobile) for a two hour time 
period, 5-minute long-term monitoring of ambient BC 
levels adjacent to a major highway (Near-Road) covering a 
one-year time frame, and 1-minute monitoring of in-home 
BC concentrations (Indoor) covering a two-day time period. 
All of the test data were recently collected by researchers 
in the United States Environmental Protection Agency’s 
Office of Research and Development (Table 1), with 
publications pending for each study.  

The Aethalometer calculates the average the average BC 
concentration for time interval i as:

s i
i

atn i

A ATN
BC

Q E t  (1) 

where As is the deposit cross-sectional area [L2], Q is the 
sample stream volumetric flow rate [L3/t], Eatn is the 
change in attenuation (ATN) over the time interval ti = 
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Table 1. Data sets tested.
Name Instrument Description 
SootGen MicroAethalometer (AE51) Diffusion flame source maintained at a constant emission level, 

measuring BC at a 1 second sampling rate. PI: T. Yelverton 
Stove MicroAethalometer (AE51) Biomass-burning cookstove emissions, measuring BC at a 1 

second sampling rate. PI: J. Jetter 
Mobile Portable Aethalometer (AE42) On-road outdoor air, on a mobile platform measuring BC at a 1 

second sampling rate. PI: G. Hagler 
Near-Road Rackmount Aethalometer (AE21) Outdoor air environment nearby a major highway, measuring 

BC at a 5 minute sampling rate. PI: R. Shores, S. Kimbrough 
Indoor MicroAethalometer (AE51) Indoor air environment, measuring BC at a 1 minute sampling 

rate. PI: D. Hammond 
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Fig. 1. Black carbon (raw 1 Hz data and post-processed with a 1-minute running average) and particle count measured for 
a constant soot generation experiment (a). The corresponding filter attenuation raw signal for the Aethalometer (model 
AE51) is shown (b). Note that for certain Aethalometer models, the ATN baseline is not set to 0 for a new filter spot – the 
case shown has an arbitrary negative baseline that does not affect the BC values reported.  

effective mass absorption efficiency [L2/M] of the 
deposited particles in the filter matrix, and ATNi is the 
ti+1 – ti. The Aethalometer reports data at an instrument 
(intrinsic) timebase t that remains constant for the data set 
(i.e. ti = t for all i) unless the operating timebase is 
changed by the user. BC is proportional to the rate of 
change of concentration with time, i.e. the pointwise slope 
of the ATN time series in Fig. 1(b). A challenge presented 
by high time resolution measurements is that even with 
high deposition rates of absorbing material, at short 
timebases ATN can be sufficiently small to be significantly 

influenced by measurement noise.  
The algorithm proposed here smoothes the BC time series 

through a user-specified minimum change in attenuation 
( ATNmin), which for a given BC concentration results in an 
adjusted timebase t’. For sufficiently high BC and/or a 
long intrinsic timebase, ATNi will be greater than 

ATNmin and the intrinsic time resolution will be preserved. 
However, for relatively lower BC concentrations and/or 
short timebases, ATNi will be less than ATNmin and the 
time series will be smoothed over the time interval ti’ > 

t that is needed to reach ATNmin. A second constraint is 
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that the ATN value at the end of the interval t’ must be 
the last occurrence of that value in the remainder of the 
time series for that sample spot, thus extending ti’ to the 
final occurrence of that ATN value. The frequency of 
negative BC values are reduced using this constraint 
because a return to the same ATN value later in the time 
series means ATN < 0 at that time step which results in a 
negative BC concentration (Eq. (1)). An implication of the 
second constraint is that there is some degree of smoothing 
even if ATNmin is to zero.  

In principle the average BC concentration over the time 
interval ti’ could be calculated from Eq. (1) and using 

ATNi’/ ti’. However, the light transmission measurement 
duration at high time resolution is very short and thus 
susceptible to noise. Furthermore, ATN values reported by 
the Aethalometer are truncated at 0.01 units which can add 
uncertainty to the reconstruction of BC using Eq. (1). In 
light of these issues, the average BC concentration over 
time interval ti’ is calculated by averaging the set of BC 
values reported at the intrinsic timebase over that interval.  
For many data sets, the ATN values increase to a threshold 
value (the user-specified maximum attenuation) and then 
reset to a low value upon the filter tape automatically 
advancing to provide a fresh filter spot. In order to handle 
filter changes in the algorithm, the processing window is 
confined to the region of a single filter spot and the final 
averaging period (adjusted timebase ti’) immediately 
prior to the filter change can be truncated. The above data 
processing steps have been implemented in an algorithm 
we term the Aethalometer Optimized Noise-Reduction 
Averaging (ONA) method. The specific steps of the 
algorithm include the following: 
(1) Time series are imported for three parameters in the 

Aethalometer raw data – timestamp, black carbon 
concentration (BC), and attenuation (ATN).  

(2) User specifies the minimum change in attenuation 
( ATNmin) for averaging the BC data with the default 
value of ATNmin = 0.05 based on the analysis provided 
below.  

(3) Identify the locations of filter tape advances in the 
time series, if they exist. 

(4) For each time series corresponding to a single sample 
spot, start at the beginning of the time series (t(0) = t0,
ATN(0) = ATN0) and determine the shortest time interval 

t’ that meets the criterion ATN (= ATNt(0)+ t’ – ATN0)
ATNmin.

(5) Search the remainder of the sample spot time series 
following t(0) + t’ to check whether there any 
occurrences of ATNi  ATNt(0)+ t’. If so, update t’ to 
be the last such occurrence in the sample spot time series.  

(6) Average the raw BC over the window t(0) + t’ and 
apply this average BC value to each record at the 
timestamps within the window. This maintains the 
output being concentration values reported at the 
intrinsic timebase. The number of data points used in 
the averaging for that interval, t’/ t, is also recorded 
for each timestamp within the window. 

(7) Starting with the next record after t(0) + t’ in the raw 
data time series, which has timestamp t(1) = (t(0) + t’)

+ t, successively repeat steps (4) through (6) until the 
end of the sample spot time series is reached. If t(k) + 

t’ for the last (kth) interval extends beyond the sample 
spot time series, set t’ so that the end of the interval 
coincides with the last record in the sample spot time 
series.

(8) Repeat steps (4) through (7) for each sample spot time 
series in the data set.  

The Aethalometer ONA program has been implemented 
in MATLAB (version R2010b, Mathworks, Inc.) and the 
m-file code and instructive comments are provided in 
Supplementary Information (SI). The code for ONA may 
also be evaluated for conversion to other programming 
languages. EPA has developed a version of the algorithm 
as a stand-alone program allowing for batch-processing of 
data files, which will be publically available by internet.  

In order to evaluate the results of the noise-reduction 
algorithm, two metrics were established – a measure of 
noise in the original and post-processed data and a measure 
of time resolution in the post-processed data. Noise was 
quantified as the average absolute value of the instantaneous 
change in BC in the data set as follows, 

Noise (ng/m3) = 10

1 n
i ii

BC BC
n

 (2) 

where n + 1 is the number of records in the time series. 
This measure of noise should characterize instrument-
based fluctuations when the sample BC concentration is 
kept constant, such as the SootGen experiment, or when 
the sample concentration changes slowly relative to the 
sampling timebase. For situations where the sample 
concentration may be changing rapidly, such as the Mobile 
and Stove cases, the estimate of noise may be biased high 
although the relative changes in noise from the original to 
post-processed data are still informative. Time resolution is 
evaluated as a histogram or empirical cumulative density 
function (ECDF) of the weighted timebase or, for 
simplicity, as the weighted median timebase of the data 
(equivalent to the 50th percentile of the ECDF).  

RESULTS AND DISCUSSION 

Relationship between Light Attenuation and Noise 
Reduction 

The SootGen experiment provided critical data to evaluate 
the relationship between the minimum ATN value applied 
in ONA and the reduction of instrumental noise, as the 
sample BC level was maintained nearly constant for several 
hours while data was acquired at a 1-second resolution. The 
noise level in the original data set was estimated at 12,500 
ng/m3, relative to an overall mean concentration of 27,500 
ng/m3. Applying ONA with various ATNmin levels ranging 
from 0 to 0.1, ONA-processed data had final noise levels 
decreasing from 2,185 to 11 ng/m3, respectively. Even with 

ATNmin set to zero, ONA performed smoothing over 
periods of fluctuating ATN levels and reduced the noise 
level six-fold in the data (Fig. 2). Adding a minimum ATN
requirement reduced the noise level by an additional order of  
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Fig. 2. Comparison of estimated noise in the post-processed 
SootGen BC signal versus the input minimum change in 
ATN required by the post-processing program. Noise is 
estimated using Eq. (2).

magnitude, until an asymptote is reached at approximately 
ATN = 0.05. Therefore, the value of ATN = 0.05 was 

applied to post-process other test data sets (Stove, Mobile, 
Near-Road, and Indoor) with the ONA algorithm. It should 
be noted that the analysis shown in Fig. 2 is appropriate for 
cases where BC levels are maintained relatively constant and 
would be more uncertain in conditions with variable input 
concentrations.  

Another conclusion that may be drawn from the noise-
reduction versus ATN analysis for the SootGen experiment 
is that it is possible to use the ATN analysis to select an 
ideal constant averaging time base to minimize instrument-
related noise. For studies desiring a set averaging period, 
Aethalometer BC data could be analyzed to determine the 
minimum averaging time window required such that ATN 
over any time window in the BC data equals or exceeds 
0.05.  

ONA Performance for Test Cases 
The ONA program results, with ATNmin = 0.05, indicate 

that the adaptive time-averaging approach based on light-
attenuation signals in the instrument successfully resolves 
noise while retaining the significant trends in the data sets 
(Fig. 3 and Table 2). For all cases sampling at a rate of 1 
minute or faster, ONA reduced noise in the data by 
approximately an order of magnitude (Table 2). For the 
Near-Road case, which reported data at a 5-minute interval, 
the longer sampling period already resolved much of the 
noise in the data, thus ONA only slightly lowered the noise 
for that case. 

One consequence of instrumental noise while sampling 
at low concentrations is the appearance of negative values 
in Aethalometer data sets. The Stove and Indoor data had 
approximately 30% negative values in the original data, 
which ONA reduced to zero after processing. The 
alternative approach of applying running averages to these 
data sets can reduce the occurrence of negatives – for 

example, applying a factor of 60 longer averaging window 
to the Stove (60 s average from the original 1 s) and Indoor 
(60 min from 1 min), leads to 23% remaining negatives for 
Stove and 6% remaining negatives for Indoor. However, 
applying a fixed longer averaging period simply to reduce 
negatives can lead to a loss in the ability to detect real 
variations and trends in the data. For example, a 60 min 
running average for the Indoor case drops the central peak 
at 2:00 (Fig. 3(e)) by over 60%, while the peak is preserved 
in the ONA adaptive time-averaging approach. For the 
Stove and Indoor cases, several lengthy averaging windows, 
a maximum 8 hrs for the Indoor case and 2 hrs for the 
Stove case, were generated by the ONA algorithm for time 
periods with low concentrations and when BC values are 
seen to oscillate around zero (Fig. 3(b) and (e)). Meanwhile, 
at least 20% of the time covered by the Indoor data and 
Stove data had time averaging windows shorter than 20 
min or 13 seconds, respectively. 

An efficient way to assess the ONA-produced varying 
timebase of the example data sets is through plotting the 
empirical cumulative density function for each case (Fig. 
4). Among the data sets sampling at a 1 second time 
resolution (Mobile, Stove, and SootGen), the Mobile data 
retains the highest time resolution of the group after post-
processing with ONA. While the BC levels measured in 
the Mobile case were much lower than that sampled for 
Stove and SootGen (Table 2), the Mobile data collection 
was performed using a model AE42 and operating at a 
flow rate of 4 L/min, while the Stove and SootGen 
experiments used a model AE51 operating at a flow rate of 
0.05 L/min. Thus, the Mobile case generally had a more 
rapid increase in ATN (i.e., higher filter-loading rate of BC) 
throughout the time series, relative to Stove and SootGen. 
For the Near-Road case, ONA only alters about 15% of the 
5-minute data, while ONA alters nearly 100% of the data 
for all of the other cases (Fig. 4).  

CONCLUSIONS 

Black carbon, produced through the incomplete combustion 
of biomass or fossil fuels, is a key air pollutant measured in 
combustion emissions studies or field studies evaluating 
combustion-related air pollution. While BC data is 
sometimes desired at the highest time rate possible (e.g., 1 
second), instrument noise can lead to erroneous data 
recorded by the commonly used Aethalometer. The ONA 
algorithm capably reduces noise in Aethalometer data, with 
the time-averaging window determined by the algorithm 
based upon the loading rate of light-absorbing particles on 
the instrument’s internal filter. Five unique Aethalometer 
BC data sets are analyzed using the ONA procedure – a 
soot generation experiment, biomass-burning cook stove 
emissions study, on-road mobile monitoring study, 
continuous measurement of a near-road ambient 
environment, and an indoor air sampling study. Data 
processed from the soot generation study reveal a 
significant relationship in noise reduction by ONA and the 
selection of the required minimum change in light 
attenuation, reaching a plateau in noise-reduction at



Hagler et al., Aerosol and Air Quality Research, 11: 539–546, 2011544

13:45 14:00 14:15 14:30 14:45 15:00
0

2

4

6

8
x 10

4

B
C

 (
ng

 m
-3

)

Original ONA

09:00 10:00 11:00 12:00 13:00 14:00
-5

0

5

10

15

20
x 10

4

B
C

 (
ng

 m
-3

)

07:30 08:00 08:30 09:00

0

2

4

6

8
x 10

4

B
C

 (
ng

 m
-3

)

06/14 06/21 06/28

0

2000

4000

6000

8000

B
C

 (
ng

 m
-3

)

18:00 00:00 06:00 12:00

0

5000

10000

15000

B
C

 (
ng

 m
-3

)

(a)

(b)

(c)

(d)

(e)

Fig. 3. Example original data (gray) and post-processed data using the optimized noise averaging (ONA) approach for 
SootGen (a), Stove (b), Mobile (c), Near-Road (d), and Indoor (e) sample data sets. 

Table 2. Metrics for sample data sets. 
Name Average BC 

(ng/m3)
Timebase 
Original 

Timebase ONA, 
Mediana

Noise (ng/m3)
Originalb

Noise (ng/m3)
ONAb

% negative 
Original 

% negative 
ONA 

SootGen 27,500 1 s 15 s  12,500 63 0.2 0.0 
Stove 14,500 1 s 8.4 min 10,100 109 32.4 0.0 

Mobile 3,960 1 s 10 s 3,200 386 13.3 0.1 
Near-Road 1,020 5 min 5 min 370 297 2.6 0.2 

Indoor 430 1 min 2.5 h 640 36 29.0 0.0 
a Computed as a weighted median and equivalent to the 50th percentile of the ECDF shown in Fig. 3. 
b The noise metric was quantified using Eq. (2). 

ATNmin = 0.05. The ONA algorithm leads to significant 
noise reduction in all cases tested, while the ability to 
detect temporal variations in the data is preserved. An 
important added advantage of the ONA algorithm is the 

reduction of the occurrence of negative data values in 
lower concentration sampling environments – for all cases 
tested, the ONA post-processed data have a near-zero 
occurrence of negative values.  
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Supplementary Information 

MATLAB Code for ONA 

%this program will look for positive (and final) changes in ATN throughout the data. This code 
anticipates that a variable named “BC_ONA” has already been created and has the following 
columns – 1) MATLAB serial timestamp, 2) original BC concentrations, 3) original ATN values.
clear BC_ONA_ATN filtchange

%create new variable
BC_ONA_ATN=BC_ONA; 

%find filter change points
for i=2:length(BC_ONA)-1 
   temp(i,1)=abs(BC_ONA_ATN(i+1,3)-BC_ONA_ATN(i,3)); 
end
temp1=find(temp(:)>30 | isnan(temp)); 
clear temp
if isempty(temp1)==0 
    filtchange(1:length(temp1)+1,1)=0; 
    filtchange(2:end,1)=temp1; 
    filtchange(end+1,1)=length(BC_ONA_ATN); 
else
    filtchange(1,1)=0; 
    filtchange(2,1)=length(BC_ONA_ATN); 
end
clear i temp1

%ATN default incremental value  
delATN=0.05;  

%calculate smoothed BC
BC_ONA_ATN(:,4)=1; 
for k=1:length(filtchange)-1 
    j=filtchange(k)+1;  %set to first point after filter change
    for i=filtchange(k)+1:filtchange(k+1) 
        if j<filtchange(k+1) 
            if i==j 
                 
des_ind=find(BC_ONA_ATN(j+1:filtchange(k+1),3)<=BC_ONA_ATN(j,3)+delATN); 
                    if isempty(des_ind)==0 
                         %calculated smoothed new BC
                         
BC_ONA_ATN(j:des_ind(end)+j,2)=nanmean(BC_ONA_ATN(j:des_ind(end)+j,2)); 



                         %calculate averaging period
                         
BC_ONA_ATN(j:des_ind(end)+j,4)=length(BC_ONA_ATN(j:des_ind(end)+j,2)); 
                         j=j+des_ind(end)+1; 
                    else
                         j=j+1; 
                    end
            end
        end
    end
end
clear i j des_ind ans max_ind delATN k filtchange

%METRICS OF SMOOTHING PERFORMANCE – the code from this point forwards only 
displays the results and does not do any data alteration. 
%1. reduction of negatives - fraction in original vs. remaining
numneg_org=length(find(BC_ONA(:,2)<0))/length(BC_ONA(:,2)) 
numneg_filt=length(find(BC_ONA_ATN(:,2)<0))/length(BC_ONA(:,2)) 
clear numneg_org numneg_filt

%2. reduction of noise
clear temp i noise
for i=1:length(BC_ONA)-1 
    temp(i,1)=abs(BC_ONA(i+1,2)-BC_ONA(i,2)); 
    temp(i,2)=abs(BC_ONA_ATN(i+1,2)-BC_ONA_ATN(i,2)); 
end
noise(1,1)= nanmean(temp(:,1)); 
noise(1,2)= nanmean(temp(:,2)); 
bar(noise) 
ylabel('Avg Abs(BC_t_+_1_-_t) (ng m^-^3)')
clear i noise temp

%3. averaging interval and histogram of points averaged
time_inc=abs(BC_ONA(2,1)-BC_ONA(1,1))*24*60*60; 
timeavg(1,1)=1*time_inc; 
timeavg(1,2)=nanmean(BC_ONA_ATN(:,4))*time_inc; 
figure 
bar(timeavg) 
ylabel('Avg timebase (s)')
clear time_inc timeavg

figure 
hist(BC_ONA_ATN(:,4)) 
xlabel('# pts averaged')
ylabel('N pts affected')
   



%4. Before - top figure BC time series, bottom figure ATN time series
figure 
subplot(2,1,1) 
plot(BC_ONA(:,1),BC_ONA(:,2)) 
ylabel('BC (ng m^-^3)')
datetick('x')
subplot(2,1,2) 
plot(BC_ONA_ATN(:,1),BC_ONA_ATN(:,3)) 
ylabel('ATN')
datetick('x')
clear i

%5. After - top figure BC and BC-ONA time series, bottom figure averaging
%time
figure 
subplot(2,1,1),plot(BC_ONA(:,1),BC_ONA(:,2),'k-
',BC_ONA_ATN(:,1),BC_ONA_ATN(:,2),'m-')
datetick('x','keeplimits')
ylabel('time')
ylabel('average BC concentration (ng m^-^3)')
legend('original', 'BC-ONA')

subplot(2,1,2),plot(BC_ONA_ATN(:,1),BC_ONA_ATN(:,4),'b.-' ) 
datetick('x','keeplimits')
xlabel('time')
ylabel('# pts averaged')


