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ABSTRACT

The characteristics and distribution of metal contents emitted from a power plant fueled by heavy oil and its impact to
the ambient atmosphere near the power plant was investigated. The current investigation measured toxic (As, Cd, Cr, Hg,
Ni and Pb), anthropogenic (Ba, Cu, Mn, Sb, Se, Sr, Ti, V and Zn) and crust (Al, Ca, Fe, K and Mg) elements from a 2,000
MW heavy oil-fired power plant. Results showed the emission concentration from the power plant contributed to 17,976
kg/yr annual emission of anthropogenic elements, which was significantly higher than those from some electrical arc
furnaces and coke ovens in Taiwan. For toxic metals, As, Cd or Ni concentration do not exceed target values established
by the European Council (2004/107/EC) for As (6 ng/m®), Cd (5 ng/m’) and Ni (20 ng/m’®). This study also applies
nonparametric statistical analyses for evaluating the relationship between metal concentrations and operational parameters
(including emitted CO,, O,, flue gas emission temperature, flue gas velocity, moisture, heavy oil consumption rate, boiler
steam temperature, boiler operational pressure, and electricity). Findings show negative correlations between most toxic
metals (As, Cd, Cr and Hg) and operational parameters, though some pairs were not statistically significant. The current
study provides only preliminary statistical results between metal concentrations and operational parameters due to small
sample sizes. Further investigation requires larger sample sizes.
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INTRODUCTION (Heinrich et al., 2002; Kuo ef al., 2007). This hypothesis is

supported by evidence that sensitized mice exposed to

Scientists recognize certain trace metals, such as iron
(Fe), zinc (Zn), copper (Cu), chromium (Cr), iodine (I),
cobalt (Co), molybdenum (Mo), and selenium (Se), as
essential elements for human health and plant nutrition.
However, the toxic properties of many metals are a point
of concern. (Sarkar, 2002; Saxena et al., 2008). Findings
show that exposure to transition metals associated with
ambient particles originating from industrial sources elicit
airway inflammation in healthy subjects (Ghio and Devlin,
2001; Schaumann et al., 2004; Wang et al., 2008). Highly
concentrated airborne metals in industrial areas could play
a role in regional prevalence of allergic conditions
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PM, s extracts rich in Zn, Mn, Pb, Cu and Cd, exhibited
increased airway responsiveness to metacholine and lung
inflammatory cells (Gavett et al., 2003). Metals from
industrial emissions or traffic have been associated with
heart rate variability (Magari et al., 2002), increase in
hospital emergency visits for respiratory conditions, and
increased risk of lung cancer after long term exposures
(Pope lii et al, 2002). In urban and industrial
environments, however, particles not only contain metals,
but also include toxic organic compounds, such as PAHs,
whose concentrations are greater in fine and ultrafine
particles. This fact has caused people concern about
various pollution sources around their habitations.

Coal and oil combustion facilities produce fine particles
in the submicron size range (Jang et al., 2007), enriched by
heavy metals. Jang et al. (2007) indicated that heavy oil
combustion resulted in relatively pronounced ultra-fine
particles smaller than 1.0 pm, difficult to remove by
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existing air pollutant control devices (APCD). The diverse
PM composition responsible for these health effects is still
unknown and attracts researchers’ attention, heightening
awareness of pollutants emitted from power plants. Some
literatures address heavy metal emissions from coal/oil
power plants worldwide, such as Finland (Hatanpaa et al.,
1997), Greece (Petaloti ef al., 2006), Spain (Moreno ef al.,
2007), Turkey (Yatkin and Bayram, 2008), India (Reddy et
al., 2005) and Korea (Jang et al., 2007), however, few
literatures refer to Taiwan. This study investigates the
characteristics and emission factors of heavy metals from a
power plant fueled by heavy oil. Besides the influence of
power plant emission on the nearby atmosphere, the
current work also evaluates the relationship between heavy
metal and operational parameters to provide more
information for further research on the effect of flue gas
from the power plant.

EXPERIMENTAL SECTION

The current investigation selects the largest power plant
(2,000 MW) near the Pacific Ocean and located in
northern Taiwan, for this study (Fig. 1). Sixteen samples
were collected from the power plant stack fueled by low-
sulfur heavy oil from March 2006 through January 2007.
The power plant is equipped with four sets of boilers
configured with lower-NOx burners and with electrostatic
precipitators as air pollution control devices. The oil
consumption ranged from 41.1 kL/hr to 94.5 kL/hr. All
samples were collected from the flue gas stack according
to Taiwan EPA NIEA A302.72C. To ensure
contamination-free sampling and transportation, this
research also took one blank trip and one blank field when
conducting the field sampling. After completing the flue
gas sampling, this work brought the samples back to the
laboratory and placed them in a refrigerator at a
temperature below 10°C.

Six ambient air samples were collected using a PS-1
sampler (Graseby Andersen, GA) according to the Taiwan
EPA Reference Method NIEA A102.11A. Fig. 1 also
shows the sampling site. The samples were collected
separately in August and November. Three sampling sites
A, B, and C were chosen as considering the upwind and
downwind effect and available sampling location. The
wind blew from the southwest 8% of the time on August
and from the northeast around 30% of the time on
November according to the wind rose. The sampling flow
rate was specified at ~0.225 m*/min, and each sample was
collected continuously on three consecutive days. The PS-
1 sampler was equipped with a quartz fiber filter for
sampling heavy metals. The filters were digested following
the procedure of NIEA A301.11C, which is the EPA
reference method in Taiwan, and metal elements were
quantified by ICP-AES (Jobin-Yvon, JY38 Plus).
Additionally, nonparametric correlations and the median
test analysis for all samples were analyzed using Statistical
Package for Social Sciences, version 15.0 (SPSS, Chicago,
IL).
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Fig. 1. The sampling sites were located in northern Taiwan.

RESULTS AND DISCUSSION

Metal Concentrations in Flue Gas Stack of the Heavy
Oil-Fueled Power Plant

The current work classified metal elements into toxic
(As, Cd, Cr, Hg, Ni and Pb), anthropogenic (Ba, Cu, Mn,
Sb, Se, Sr, Ti, V and Zn) and crust (Al, Ca, Fe, K and Mg)
groups (Wang et al., 2003). Findings reveal higher mean
concentrations in two crust elements of Al and K (1637
and 1153 pg/m’), respectively, and two anthropogenic
elements, Zn and Ba (1445 and 1128 pg/m’). The four
metals account for 82.2% of total metal element mass
concentrations. Findings show Mercury (Hg) as having the
lowest metal element mass concentrations of the twenty
investigated, with a mean value of 0.15 pg/m’. The
concentrations of toxic elements Cd, Cr, Ni and Pb, were
higher than those in Reddy’s study (Reddy et al., 2005),
however, As and Hg were lower than those in Reddy’s
study (Reddy et al., 2005). The capacity in this study was
2,000MW, much higher than in Reddy’s study (200 MW
for a coal-fired power plant and 6 MW for a fuel-oil based
power plant). Given a compatible power plant (1170 MW),
the concentrations of As Cd, Cr, Hg, Ni and Pb were much
lower than those in Aunela-Tapola’s study (Aunela-Tapola
etal., 1998).

Table 1 lists metal concentrations in the flue gas stack of
a power plant among different seasons, the first report
among English literatures for a power plant fueled by
heavy oil in Taiwan. Findings show most mean metal
concentrations in fall as having the lowest concentration
compared to those in other seasons except Fe, Cd, Cr, Mn,
Ni, Sb, Se and Ti. Furthermore, findings show Cd and
Hgas statistically significant with seasons. The result also
indicates seasonal statistical significance for some
operational parameters, flue gas temperature, flue gas
velocity, fuel consumption, boiler steam temperature and
electricity.  Additionally, no significant differences
exhibited in all variables among the four stacks via the
nonparametric Kruskal-Wallis H tests (data not shown).
These findings also qualified the analysis results.
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For toxic metals, Cr, Ni and Pb concentrations reached
the highest in spring. However, Hg concentrations are only
detected in winter and not detectable in other seasons. The
sums of toxic metals and crust metals in spring were
obviously much higher than those in other seasons. The
sums of crust metals and anthropogenic metals were much
lower in fall than those in other seasons. Dust storms
always occur in the dry springtime (Fang et al., 2009; Shen
et al., 2009),which will probably lead to more toxic metals
from the power plant contributing to nearby ambient air. It
warrants more concern in the future.

Metal Concentrations in Ambient Air around the Heavy
Oil-Fueled Power Plant

As concentration ranged from 0.50-2.00 ng/m’, with an
average of 1.30 ng/m’. Cd concentration ranged from
0.10-0.70 ng/m’, with an average of 0.45 ng/m’. Ni
concentration ranged from 2.00-13.0 ng/m’, with an
average of 5.35 ng/m’. Pb concentration ranged from 8.9—
46.7 ng/m’, with an average of 26.2 ng/m’. Concentration
was between Moreno’s result (Moreno et al., 2007) of
PM,, and PM,s (a mean of 1.9 ng/m’ and 1.0 ng/m’,
respectively) in Puertollano, an important coal mining
town including fossil fuel burning power plants as well as
petrochemical and fertilizer complexes. Cd, Ni or Pb
concentration was higher than that in Moreno’s result
(Moreno et al., 2007) (Cd in PM;y and PM, 5 both were 0.1
ng/m3; Ni in PM, and PM, 5 were 4.1 ng/m3 and 3.0 ng/m3,
respectively; Pb in PM, and PM, 5 were 12 ng/m3 and 9.3
ng/m’, respectively). However, Cd, Ni or Pb was lower
than that in Yatkin’s study (Yatkin and Bayram, 2007),
whether in an urban or suburban sampling site (except for
PM, 5 sample in suburban winter). Lippmann et al. (2006)
indicated Ni was a particularly influential component of
ambient FPM (fine ambient particulate matter) in terms of
cardiac responses to inhalation ambient air FPM. The Cd
or Ni concentration did not exceed target values
established by the European Council (2004/107/EC) for As
(6 ng/m’), Cd (5 ng/m®) and Ni (20 ng/m’) (Petaloti et al.,
2006). The Pb concentration was also much lower than
that (1.0 pg/m’) in the ambient air quality standard of the
Taiwan EPA (2004/0060) (EPA). The Hg concentration
was 0.10 ng/m’ in all samples, the lowest concentration
compared with other studies (Kim and Kim, 2001; Liu et
al., 2002; Sakata and Marumoto, 2002; Wang ef al., 2005).

Fig. 2(a) and 2(b) show the toxic metal profiles
measured from ambient atmosphere of the heavy oil-fueled
power plant in August and November, respectively. The
Pb was the dominant metal among the six toxic metals for
August and November at three sampling sites, except for
November samples at the B site. Fig. 2(c) illustrates the
averaged profiles of toxic metals in ambient atmosphere.
The pattern was totally different from that in the power
plant flue gas. The highest toxic metal concentration was
Cd in flue gas samples; however, Pb was highest in
ambient samples. The influence of metal concentrations
from power plant flue gas to ambient atmosphere is
seemingly not direct; other possible influential factors
warrant further investigation.
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Fig. 2. (a) Toxic metals profiles in the ambient atmosphere
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atmosphere in November (c) Averaged toxic metals
profiles in the ambient atmosphere

Al, Fe and Ca are the most common metal elements
formed in the earth’s crust (Taylor, 1964). The enrichment
factor (EF) pattern is a reference value of contamination
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status (Kim ef al., 2002). The EF provides information to
judge enrichment (or depletion) of a given element relative
to the reference element (Al, in this study). The Taylor’s
study defines EF as follows: EF = {X/Al} gampie/ {X/Al} crust
(X denotes a metal of interest). The EF values were
grouped into three categories in this study: (1) <10, Al, Ca,
Fe, Mg, Mn, Sr and Ti, (2) 10-1000, As, Ba, Cr, Cu, K, Ni,
Pb, Sb and V, (3) >1000, Cd, Se and Zn. Fig. 3 also shows
the EF for the twenty analyzed metal elements for various
studies.

For toxic metals, the values of EFs for As, Cd and Ni
were highest in Reddy’s study on the coal fired power
plant (Reddy ef al., 2005). The 220 MWs power plant was
located in western India with an independent bituminous
coal generation unit and equipped with tangential burners.
The EF for Cr was highest in a 6 MW-installed capacity
oil-based power plant also located in western India (Reddy
et al., 2005). Lower EFs for the power plant in this study
were probably due to higher combustion efficiency or
higher APCD efficiency. Findings show the EF for Pb in
Yatkin’s study (Yatkin and Bayram, 2008) to be highest.
The sampling site was in the city center near a motorway
in Izmir, the third most populous city in Turkey. Heavy
loading transportation obviously contributed more Pb to
the atmosphere than other industries. Contrasted to toxic
metals, the highest EFs found in this study were Al, Ba, K,
Mg, Mn, Sr and Zn, perhaps because of the power plant’s
special geographic effect.

Correlation of Metal Concentrations and Operational
Parameters

This study applied nonparametric statistical analyses to
evaluate the relationship between metal concentrations and
operational parameters. The operational parameters
included emitted CO,, O,, flue gas emission temperature,
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flue gas velocity, moisture, heavy oil consumption rate,
boiler steam temperature, boiler operational pressure, and
electricity. The sampling size was not large enough to
reach statistical significance; therefore, we chose the
nonparametric Spearman correlation coefficient test. The
results show no significant difference for all metal
concentrations among four stack flue gases (data not
shown). This finding indicates no obvious emission
concentration variations for the mean annual values.
Findings show significant Spearman’s correlation
coefficients among parts of the metals (Table 2), but As,
Cd, Cr, Hg and Ti correlated less with other metals. The
highest coefficient in nineteen metal pairs occurred
between Ba and K, with r = 0.968 and p < 0.001. All
statistically related metals showed significant positive
correlations, however, findings show only a negative
correlation between As and Se (r = —0.564, p = 0.023).
Seventeen pairs among sixty significant pairs have high
coefficients with r > 0.800 and p < 0.001, especially, the
crust metals, Al, Ca and K related pairs, account for eleven
pairs.

Statistically significant associations did not exhibit
between metal concentrations and flue gas velocity.
Significant positive correlations were found between Ni
and fuel consumption (» = 0.753, p = 0.001), boiler
pressure (r = 0.679, p = 0.004) and electricity (»r = 0.662, p
= 0.005). However, significant negative correlations were
found between As and moisture (» = —0.606, p = 0.013),
and boiler pressure (» =—-0.625, p = 0.01). Ca, Cr, Cu, Mg,
Mn, Ti, V and Zn showed no significant correlation with
all operational parameters. Furthermore, the values of Cr
and Pb were significantly related to decreasing CO,
emission (» =—0.528, p = 0.036 and r = —0.553, p = 0.026,
respectively). Table 2 indicates negative correlations
between most toxic metals (As, Cd, Cr and Hg) and

1000000 = This study (flue gas), ® This study (ambient)
4 Reddy, et al (coal), v Reddy, et al (oil)
Yatkin and Bayram (urban), < Yatkin and Bayram (suburban)
100000 _ Wang, et al. (diesel)
v ;
10000 j
- L |
L
@ 1000 . e B v
= = 2 v : =
D 100 ol X v .
w . 3 5 5
s L _
iom m ]
10 ] 3 ® 5.3 . 4
« - .
1 : % 1 : - ¢
L ]
0.1

Al As Ba Ca Cd Cr Cu Fe K Mg Mn Ni Pb Sb Se Sr Ti

V Zn

Fig. 3. The enrichment factor (EF) ratio for each metal element.
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operational parameters, though some of the pairs were not
statistically significant. Especially, for all operational
parameters, Hg only negatively significantly correlated
with flue gas temperature (r = —0.526, p = 0.036).
Comparing the pairs of operational parameters, findings
show significant positive correlations between electricity
and flue gas velocity (» = 0.906, p < 0.0001), fuel
consumption (» = 0.950, p < 0.0001) and boiler pressure (»
=0.909, p <0.0001). This study provides only preliminary
statistical results between metal concentrations and
operational parameters because of small sample size.
Further investigation requires larger sample sizes.
Nevertheless, to our knowledge this is the first report to
interpret correlations between metal concentrations and
operational parameters.

CONCLUSIONS

Comparing with other studies on power plants, metal
emission concentration from the power plant was not the
highest. However, comparing with local data in Taiwan,
the value for anthropogenic element emission from the
power plant (17,976 kg/yr) was much more significant
(10.8, 104, and 4.81 fold higher than those emitted from
the coal power plant, electrical arc furnace, and coke oven)
compared with three reference emission sources (Wang et
al., 2003). The value for crust element emission from the
power plant (14,744 kg/yr) was not so significant (0.16,
7.16, and 0.24 fold higher than those emitted from the coal
power plant, electrical arc furnace, and coke oven)
compared with three reference emission sources(Wang et
al., 2003). Metal concentration from the power plant was
not so high; however, the total amount of metal emissions
from power plants cannot be neglected owing to the high
volume of flue gas. For proper environmental management
of metals, especially toxic metals, establishing a complete
source inventory of metal emission is necessary. The
government should particularly pay more attention to
power plants to address the information shortage.
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