Aerosol and Air Quality Research, 9: 385-393, 2009 Copyright © Taiwan Association for Aerosol Research ISSN: 1680-8584 print / 2071-1409 online doi: 10.4209/aaqr.2009.02.0011

Radon Decay Product Aerosols in Ambient Air

Constantin Papastefanou²

Atomic and Nuclear Physics Laboratory, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

ABSTRACT

The aerodynamic size distributions of radon decay product aerosols, i.e. ²¹⁴Pb, ²¹²Pb, and ²¹⁰Pb were measured using low-pressure (LPI) as well as conventional low-volume 1-ACFM and high-volume (HVI) cascade impactors. The activity size distribution of ²¹⁴Pb and ²¹²Pb was largely associated with submicron aerosols in the accumulation mode (0.08 to 2.0 µm). The activity median aerodynamic diameter "AMAD" varied from 0.10 to 0.37 µm (average 0.16 µm) for ²¹⁴Pb-aerosols and from 0.07 to 0.25 µm (average 0.12 µm) for ²¹²Pb-aerosols. The geometric standard deviation, σ_g averaged 2.86 and 2.97, respectively. The AMAD of ²¹⁰Pb-aerosols varied from 0.28 to 0.49 µm (average 0.37 µm) and the geometric standard deviation, σ_g varied from 1.6 to 2.1 (average 1.9). The activity size distribution of ²¹⁴Pb-aerosols showed a small shift to larger particle sizes relative to ²¹²Pb-aerosols. The larger median size of ²¹⁴Pb aerosols was attributed to α -recoil depletion of smaller aerosol particles following the decay of the aerosol-associated ²¹⁸Po. Subsequent ²¹⁴Pb condensation on all aerosol particles effectively enriches larger-sized aerosols. Pb-212 does not undergo this recoil-driven redistribution. Even considering recoil following ²¹⁴Po α -decay, the average ²¹⁰Pb-labeled aerosol grows by a factor of two during its atmospheric lifetime. Early morning and afternoon measurements indicated that similar size associations of ²¹⁴Pb occur, despite humidity differences and the potential for fresh particle production in the afternoon. In estimating lifetimes of radon decay product aerosols in ambient air, a mean residence time of about 8 days could be applied to aerosol particles in the lower atmosphere below precipitation cloud levels.

Keywords: Radon; Decay products; ²¹⁴Pb; ²¹²Pb; ²¹⁰Pb; Radioactive aerosols; Cascade impactors; 1-ACFM; AMAD; Residence time.

INTRODUCTION

The decay of radon, ²²²Rn and thoron, ²²⁰Rn in the atmosphere produces low vapor pressure decay products that coagulate with other nuclei or condense on existing aerosol particles. These decay products include ²¹⁸Po (3.0 min), ²¹⁴Pb (26.8 min) and ²¹²Pb (10.64 h). A long-lived decay product in the ²²²Rn decay chain, ²¹⁰Pb (22.3 y) is produced about an hour after attachment of ²¹⁸Po onto aerosol particles. Very little data exist on the ambient aerosol associations of the decay products of both radon isotopes with respect to their aerodynamic size distributions relative to the formation and growth mechanisms of aerosols.

Fig. 1 presents the decay scheme for radon, ²²²Rn and thoron, ²²⁰Rn, illustrating the short-lived as well as the long-lived decay products, their mode of radioactive decay and their half-lives.

Diffusion batteries have been used to investigate aerosol size associations of gross α -activity from the short-lived radon decay products (Soilleux, 1970; George and Breslin, 1980; George *et al.*, 1984) in outdoor air situations, and high-volume cascade impactors for gross β - and γ -activity from the long-lived radon and thoron decay products (Röbig *et al.*, 1980). The residence time of atmospheric aerosol particles in the lower atmosphere assuming that the air in the troposphere is considered as a well-mixed reservoir (closed system) is a function of various removal processes, the most important being:

- (a) dry deposition by impaction, diffusion and sedimentation, and
- (b) wet deposition by rain drops (precipitation scavenging) as a

Fig. 1. Decay schemes of ²²²Rn and ²²⁰Rn illustrating short-lived and long-lived decay products.

result of processes occurring both within and below the rain cloud.

The residence time of atmospheric aerosol particles can be estimated by means of radioactive nuclides as tracers, which become attached to aerosol particles and are removed with them as they are scavenged by precipitation or undergo dry fallout. Several methods have been used for estimating the mean residence time of atmospheric aerosol particles. These include measurements of the activities and ratios of radioactive decay products of radon, ²²²Rn which emanate from continental surfaces into the atmosphere, such as ²¹⁰Pb (22.3 y), ²¹⁰Bi (5.01 d) and ²¹⁰Po (138.38 d) (Francis *et al.*, 1970; Poet *et al.*, 1972; Lambert *et al.*, 1980; 1983; Marley *et al.*, 2000, Baskaran and Shaw, 2001). However, there is disagreement between the

^{*} Corresponding author. Tel.: +30-2310-998005; Fax: +30-2310-998058

E-mail address: papastefanou@physics.auth.gr

derived values of the residence times due to various processes, including the fact that they refer to different portions of the atmosphere.

This paper summarizes results of an investigation designed to characterize the aerodynamic size distributions and the residence time of atmospheric aerosols in the context of ²²²Rn- and ²²⁰Rn-decay products for better understanding of how radioactive aerosols behave in the atmosphere, and of the aerosol growth mechanism.

EXPERIMENTAL METHODS

Measurements on aerodynamic sizes of atmospheric aerosols associated with radioactive nuclides, such as radon decay products ²¹⁴Pb, ²¹²Pb and ²¹⁰Pb were carried with Anderson type 1-ACFM ambient cascade impactors with or without the Andersen model 2000 low-pressure modification, as well as with Sierra model 236, six-stage high-volume cascade impactors, HVI.

The 1-ACFM design operated at 28 L/min (1 ft³/min). The eight stages had effective cutoff diameters, ECDs of 0.4, 0.7, 1.1, 2.1 3.3, 4.7, 7.0 and 11.0 µm. The low-pressure modification, which alters the impactor's operation by increasing the resolution in the submicron region, involves a regulated flow rate of 3 L/min, five low-pressure (114 mm Hg) stages for the submicron region and eight atmospheric pressure stages for separating aerosol particles above 1.4 µm. The ECDs of the low-pressure stages were 0.08, 0.11, 0.23, 0.52 and 0.90 µm, whereas for the upper stages they were 1.4, 2.0, 3.3, 6.6, 10.5, 15.7, 21.7 and 35.0 µm. A schematic diagram of a low-pressure cascade impactor, LPI complete system is shown in Fig. 2. The stainless steel plates supplied by the manufacturer were used for aerosol particle collection. Either polycarbonate or glass-fiber backup filters were used to collect all particles below the 0.08-µm collection plate. The ECDs of the high-volume impactor stages were 0.41, 0.73, 1.4, 2.1, 4.2 and 10.2 µm. The flow rate of this 20 cfm highvolume cascade impactor was about 34 m³/h.

The length of each collection period varied from about 3 h for ²¹⁴Pb to 30 or 40 h for ²¹²Pb with low-pressure impactor measurements and from 1 to 24 h for ²¹⁰Pb and ²¹⁰Bi for high-volume impactor measurements. The samples were collected 13 m above the ground on the roof of the Environmental Sciences

Division building at the Oak Ridge National Laboratory, ORNL, in Oak Ridge, Tennessee (35°58'N, 84°30'W).

The deposits on the stainless-steel collection plates of the lowpressure cascade impactor were leached with a solution of 1 M HNO3 and the leachate rapidly evaporated on 5.08-cm stainless steel plates using a hot plate. The concentrations of ²¹⁴Pb and ²¹²Pb in the impactor plate leachates were measured using seven ZnS (Ag) alpha scintillation counters with backgrounds averaged 0.025 cpm. The 1 σ counting uncertainty was 5% or less for the stages corresponding to aerosols below 0.52 μ m and < 15% for the stages collecting to aerosols above 0.52 μ m. The calculated activities of ²¹⁴Pb and ²¹²Pb were used to determine the activity size distribution of each radionuclide and then the activity median aerodynamic diameter "AMAD" of the ²¹⁴Pb- and ²¹²Pbaerosols. The high-volume impactor plates were leached with 0.1 M HCl. Lead-210 was determined 30 days after collection stopped by separating and measuring ²¹⁰Bi (Poet et al., 1972). When ²¹⁰Pb was measured, the upper two high-volume impactor stages were coated with a thin layer of petroleum jelly to minimize soil particle bounce. While nuclepore polycarbonate membranes (0.4 µm) were preferred as backup filters for lowpressure cascade impactors, glass-fiber filters had to be used in

the high-volume impactor measurements. The activity of ²¹⁰Pb- and ²¹⁰Bi-associated aerosol particles was measured by a low-background phoswitch scintillation detector system having a background of 2 cpm and efficiency higher than 40% for counting β-radiation. This system consisted of a thin CaF₂ (Eu) primary crystal with a decay time of 0.23 µs. The samples were counted for long enough to obtain a statistical accuracy better than 5%. It must be noted that ²¹⁰Pb and ²¹⁰Bi were chemically separated and measured for their activities. Detailed description of the analytical method and technique was established and presented elsewhere (Jaworowski, 1963). The activity of ²¹⁰Pb was also measured by a surface barrier Ge detector through its gamma-ray peak of 46.5 keV. The activity size distribution and the AMAD of the ²¹⁰Pb-aerosol particles were determined upon the measurement of the activities of the aerosol-associated radioactive nuclides. Fig. 3 shows a typical gamma-ray spectrum of a glass fiber air filter obtained by a Ge detector, in which the 46.5 keV γ-ray peak of ²¹⁰Pb is clearly shown.

Fig. 2. A schematic diagram of a low-pressure cascade impactor complete system.

Fig. 3. Plot of a γ -ray spectrum of an atmospheric aerosol sample (air filter) obtained by a Ge detector.

RESULTS AND DISCUSSION

Activity Size Distribution of Radon Decay Product Aerosols

Fig. 4 shows representative plots from 46 low-pressure impactor measurements made over a ten-month period, illustrating the aerodynamic size distributions of 214 Pb- and 212 Pb-aerosols. R is the radioactivity and D_p is the particle diameter, in μ m.

About 46% of the measurements showed a radioactivity peak in the 0.11- to 0.23- μ m region (subplot a), while 39% showed a peak in the 0.23- to 0.52- μ m region (subplot b). The remaining 15% of the measurements resulted in activity size distributions similar to those in subplot c (8.7%) or subplot d (6.5%), where ²¹⁴Pb- and ²¹²Pb- activities were highest in different size ranges in the same spectrum. On the average, about 76% of the ²¹⁴Pbactivity and 67% of the ²¹²Pb-activity was found to be associated with aerosol particles in the 0.08- to 1.4- μ m size range. The activity- associated with aerosol particles smaller than 0.08- μ m can also be substantial, as indicated in Fig. 4. Fig. 4 illustrates that ²¹⁴Pb is generally enriched in the accumulation mode aerosol, particularly between 0.11 and 0.52 μ m, where most of the surface area and mass occurs, while the Aitken nuclei fraction (below 0.08 μ m) contained a higher percentage of ²¹²Pb-activity compared with ²¹⁴Pb-activity in 69.6% of the measurements.

The radon decay products become associated with atmospheric aerosol particles by condensation or coagulation processes that are surface-area related. The activity size distribution of ²¹⁴Pbaerosols showed a small shift to larger particle sizes relative to 212 Pb-aerosols. The shift of 214 Pb to a slightly higher size distribution compared to ²¹²Pb was also found using 1-ACFM and high-volume cascade impactors (Fig. 5). The higher flow rates of these impactors, as well as the ability to measure highvolume activity by gamma-ray spectrometry, made us confident that this shift was real and not a data analysis artifact. The larger median size of ²¹⁴Pb-aerosols was attributed to α -recoil depletion of smaller aerosol particles following the decay of the aerosolassociated ²¹⁸Po. Subsequent ²¹⁴Pb condensation on all particles effectively enriches larger-sized aerosols. Pb-212 does not undergo this recoil-driven redistribution. Even considering recoil following 214 Po α -decay, the average 210 Pb-labelled aerosol grows by a factor of two during its atmospheric lifetime. Early morning and afternoon measurements indicated that similar size associations of ²¹⁴Pb occur, despite humidity differences and the potential for fresh particle production in the afternoon.

The longer half-life of ²¹²Pb (10.64 h) compared to ²¹⁴Pb (26.8 min) might favor the presence of larger aerosol associations of ²¹²Pb if coagulation rates are fast relative to radioactive decay rates, although cascade impactor measurements may not be sensitive enough to record this effect. Instead, the measurements indicated that the shorter-lived chain (²¹⁸Po, ²¹⁴Pb, etc) was more often associated with larger aerosol particle sizes than the longerlived chain (²¹⁶Po, ²¹²Pb, etc). The high-volume impactor measurements reported by Röbig *et al.* (1980) also indicated a large particle shift of 214 Pb relative to 212 Pb (Fig. 6). They stated that this was due to shifts of the activity size distributions from night to day-time to smaller particle sizes by photochemical reactions and to shifts to larger particle sizes when the relative humidity increases during rainfall, and therefore depends on sampling time. They also observed that the activity size distributions of the long-lived radionuclides ²¹⁰Pb and ⁷Be are shifted to larger particle sizes compared with the activity size distributions of the shorter-lived ²¹⁴Pb and ²¹²Pb. That shift was due to larger residence times for ²¹⁰Pb and ⁷Be in the atmosphere and for ⁷Be due to a different size distribution of stratospheric and tropospheric aerosols.

The ²¹⁴Pb shift might be explained by the fact that a significant fraction of the 3.05-min ²¹⁸Po atoms, precursor of ²¹⁴Pb atoms should attach to an existing aerosol particle or coagulate with other nuclei during their lifetime, as mean attachment half-lives are of the order of a minute less (Porstendörfer and Mercer, 1980). When this attached ²¹⁸Po α -decays, the recoiling ²¹⁴Pb atom, decay product of ²¹⁸Po, can escape the aerosol particles. Complete recoil loss would occur if the particle diameter, Dp of the aerosol were smaller than the range of the recoiling nucleus. In water, this recoil range is 0.13 µm (Mercer, 1976) and should be somewhat less in the atmospheric aerosols that have a density closer to 1.5 g cm⁻³ (Friedlander, 2000). By contrast, very little of the 0.146 μ s-²¹⁶Po would attach before decaying to ²¹²Pb, because of its short life relative to attachment times. A considerable fraction of the ²¹⁴Pb should undergo recoil detachment, particularly from aerosol particles with diameters smaller than 0.1 µm (diameter approximating the recoil range). The probability of loss would decrease with increasing particle radius (Mercer, 1976). If the recondensing 214 Pb behaves like the original 214 Po, the net effect would be a shift of 214 Pb to a larger particle size distribution.

Since the subsequent β -decays of ²¹²Pb and ²¹⁴Pb + ²¹⁴Bi do not result in significant recoil (Mercer, 1976), the α -measurement of

Fig. 4. Aerodynamic size distributions of 214 Pb- and 212 Pb-aerosols obtained with low-pressure cascade impactors. R is the radioactivity, and D_p is the particle diameter. (a) Results occurred 46% of the time, (b) 39% of the time, (c) 8.7% of the time, and (d) 6.5% of the time. Lower D_p limits are arbitrary.

Fig. 5. Aerodynamic size distributions of ²¹⁴Pb- and ²¹²Pb-aerosols obtained with 1-ACFM and high-volume cascade impactors, illustrating the large particle shift of ²¹⁴Pb. R is the radioactivity, and D_p is the particle diameter. Lower D_p limits are arbitrary.

²¹⁴Po and the ²¹²Pb-decay products is in reality tracing the aerosol size distribution of a ²²⁰Rn-decay product atom (²¹²Pb) which has condensed only once and a ²²²Rn-decay product atom (²¹⁴Pb) that has probably condensed more than once. This stability of the Pb-isotopes is the basis for the generic reference to ²¹²Pb and ²¹⁴Pb size distributions.

The AMADs of 214 Pb-aerosols determined with the lowpressure impactor data varied from 0.10 to 0.37 µm (average 0.16 $\mu m)$ and for $^{212} Pb$ -aerosols from 0.07 to 0.25 μm (average 0.12 $\mu m)$ (Table 1). For the $^{210} Pb$ -aerosols the AMADs varied from 0.28 to 0.49 μm (average 0.37 μm). Lead-210 is produced by α -decay of $^{214} Po$, the event used to quantify $^{214} Pb$ distributions on the low-pressure cascade impactors. While the relationship between the aerodynamic sizes of $^{214} Pb$ and $^{210} Pb$ is complicated because of the large differences in their atmospheric lifetimes, $^{210} Pb$ has always found to be associated with aerosols larger than

Fig. 6. The activity size distributions of the atmospheric aerosols in ambient air (Robig *et al.*, 1980).

²¹⁴Pb, as indicated by the differences in AMADs reported in Table 1. Table 1 shows data for the AMADs of the radon decay product aerosols. The results were obtained assuming lognormal distributions. The reported from the literature data for radon decay product aerosols are also presented in Table 1 and analyzed as follows:

Grundel and Porstendörfer (2004) more recently carried out measurements in outdoor air at a northern latitude (51°32'N, 9°55'E) in Göttingen, Germany using an on-line alpha cascade impactor (OLACI) for a period of about one month and showed that the activity size distributions of the short-lived radon (222 Rn) and thoron (220 Rn) decay products are about 12-19 % in the nucleation mode (Aitken nuclei, 0.05-60 nm), 81-88% in the accumulation size range (60-1000 nm), and with no coarse mode (particle diameter > 1000 nm). The AMAD of the accumulation mode varied between 332 nm for 218 Po and 347 nm for 214 Po for the short-lived radon decay products and between 382 nm for 212 Po and 421 nm for 212 Pb for the thoron decay products. In comparison to the short-lived radon decay products, the AMADs of the thoron decay products were shifted significantly to larger values. For the long-lived radon (²²²Rn) decay products ²¹⁰Pb and ²¹⁰Po they showed that these radionuclides are almost 93-96% adsorbed on aerosol particles in the accumulation size range and only 4-7% of their activities are attached on nuclei with diameters smaller than 60 nm. AMAD-values of 558 nm for ²¹⁰Pb and 545 nm for ²¹⁰Po were measured, i.e. significantly larger than those of the short-lived radon and thoron decay products.

In El-Minia, Egypt (28°04'N, 30°45'E), El Hussein and

Ahmed (1995) by using a low-pressure Berner-type cascade impactor showed that the activity size distributions of the ²¹ ⁴Phand ²¹⁴Bi-attached aerosols were nearly identical and that most of the activities were associated with aerosol particles of the accumulation mode. The mean AMAD of ²¹⁴Pb-aerosols (range 261-458 nm) and ²¹⁴Bi-aerosols (range 190-620 nm) had the same value of 380 nm, but the relative geometric standard deviation, σ_g , of the log-normal distribution of ²¹⁴Pb-aerosols (σ_g : 1.67-2.25, average 2.05) shows a broader activity size distribution than for $^{214}\text{Bi-aerosols}$ (σ_g : 1.67-2.25, average 2.05). Later, El Hussein et al. (1998) from measurements in El-Minia, Egypt, found that the AMAD, varied from 175 to 485 nm (average 330 nm) and the geometric standard deviation, σ_{g} , varied from 1.62 to 3.21 (average 2.45) for ²¹⁴Pb-aerosols and from 170 to 477 nm (average 316 nm) and σ_g from 1.79 to 3.12 (average 2.35) for ²¹⁴Bi-aerosols. Apart from this, Mohammed (1999) by using a low-pressure Berner-type cascade impactor in El-Minia, Egypt reported that the AMAD for the very short-lived radon decay product ²¹⁸Po-aerosols varied from 280 to 386 nm (average 340 nm) and the geometric standard deviation, σ_g , varied from 2.5 to 2.9 (average 2.7), while for its decay product ²¹⁴Pb-aerosols the AMAD varied from 296 to 360 nm (average 320 nm) and the σ_g varied from 2.1 to 2.88 (average 2.7), which means that they are quite similar. For the relatively longer-lived thoron decay product ²¹²Pb-aerosols, the AMAD of the accumulation mode varied from 249 to 390 nm (average 360 nm) and the σ_g varied from 2.1 to 3.2 (average 2.7) (Mohammed *et al.*, 2000).

Winkler et al. (1998) by using a nine-stage low-pressure Berner-type cascade impactor in Neuherberg, Germany (48°13'N, 11°36'E) reported that the activity size distribution of ²¹⁰Pb in ambient aerosols was unimodal (log-normal) and associated with submicron aerosols of about 0.5 to 0.6 µm. On average, the AMAD of ²¹⁰Pb-aerosols (0.53 μ m) has been found to be significantly lower than the average mass median aerodynamic diameter "MMAD" (0.675 µm), and higher than or at most equal to the respective surface median aerodynamic diameter "SMAD" $(0.465 \text{ }\mu\text{m})$ of the aerosols, i.e. SMAD < AMAD < MMAD. Variation of the atmospheric processes resulted in a variability of the AMAD, between 0.28 and 0.74 µm for ²¹⁰Pb- aerosols. While in the winter period (October to April) the AMAD values of ²¹⁰Pb-aerosols averaged 0.595 µm, in the summer period ²¹⁰Pb was associated with significantly smaller-sized aerosols (AMAD: 0.43 µm).

Suzuki *et al.* (1999) by using a 40-cfm high-volume cascade impactor with five stages reported that 77% of ²¹⁰Pb- and 70% of ²¹⁰Po-activities were measured in size-fractionated aerosols with a diameter smaller than 0.70 μ m from the west coast of the Japanese Islands (38°46'N, 139°44'E).

Apart of this, Papastefanou (2008) estimated the AMAD of another radionuclide in ambient aerosols, that is ⁷Be (T $\frac{1}{2}$ = 53.3 days) of cosmogenic origin, varying between 0.76 and 1.18 µm (average 0.90 µm) in the accumulation mode of the activity size distribution of aerosol particles. The aerodynamic size

Table 1. Activity median aerodynamic diameters (AMADs) of radon decay product aerosols.

²¹⁴ Pb AMADs (µm)	²¹² Pb AMADs (µm)	²¹⁰ Pb AMADs (µm)	Reference
0.10-0.37 (avg. 0.16)	0.07-0.25 (avg.0.12)	0.28-0.49 (avg. 0.37)	This work
-	0.42	0.56	Grundel and Porstendörfer (2004)
-	-	0.28-0.74 (avg. 0.53)	Winkler et al. (1998)
0.26-0.46 (avg. 0.38)	-	-	El Hussein and Ahmed (1995)
0.18-0.49 (avg. 0.33)	-	-	El Hussein et al. (1998)
0.30-0.36 (avg. 0.32)	0.25-0.39 (avg. 0.36)	-	Mohammed (1999)
-	-	0.70	Suzuki et al. (1999)

distribution of ⁷Be in atmospheric aerosols and then the AMAD was achieved by using Andersen 1-ACFM cascade impactors, in association with a gamma-ray spectrometer linked with a Ge coaxial-type detector for the ⁷Be activity measurement of the collection plates and the back up filter of the impactor.

Residence Times of Radon Decay Product Aerosols

The method for estimating the residence time of atmospheric aerosol particles associated with the radon decay product radionuclides is based on the radioactivity of a pair of genetically related radioisotopes, such as ²¹⁰Pb, ²¹⁰Pb and or ²¹⁰Pb, ²¹⁰Po, according to the sequential disintegrations in the β -decay scheme

²¹⁰Pb (β ⁻, 22.3 y) \rightarrow ²¹⁰Bi (β ⁻, 5.01 d) \rightarrow ²¹⁰Po (α , 138.38 d) \rightarrow ²⁰⁶Pb (stable)

The residence time, τ_R is described by the formula

$$\tau_{R} = l/\lambda_{Bi} \cdot \frac{\lambda_{Bi} N_{Bi} / \lambda_{Pb} N_{Pb}}{1 - (\lambda_{Bi} N_{Bi} / \lambda_{Pb} N_{Pb})}$$
(1)

where $\lambda_{Bi} N_{Bi}$ is the activity of ²¹⁰Bi, $\lambda_{Pb} N_{Pb}$ is the activity of ²¹⁰Pb in air and $\lambda_{Bi} = 0.138 \text{ d}^{-1}$ is the decay constant of ²¹⁰Bi.

The Eq. (1) was derived from the equation of the production and removal of radionuclides assuming asteady state equilibrium

$$dN_{Bi}/dt = \lambda_{Pb} N_{Pb} - (\lambda_{Bi} + \lambda_R) \cdot N_{Bi} = 0$$
⁽²⁾

where $\lambda_R = 1/\tau_R$ is the first-order rate constant for the removal of aerosol particles from the atmosphere by all processes, that is the inverse of residence time, τ_R .

The ratio of the activities $\lambda_{Bi} N_{Bi} / \lambda_{Pb} N_{Pb}$ in Eq. (1) varied from 0.40 to 0.68 (this work) or from 0.42 to 0.85 (Moore *et al.*, 1972).

If the activity of ²¹⁰Po, λ_{Po} N_{Po} in air is considered and $\lambda_{Po} = 5.0 \times 10^{-3}$ /d is the decay constant of ²¹⁰Po, then the activity ratio of ²¹⁰Po, λ_{Po} N_{Po} and ²¹⁰Pb, λ_{Pb} N_{Pb} is given by the equation

$$\lambda_{P_{o}} N_{P_{o}} / \lambda_{P_{b}} N_{P_{b}} = \frac{\tau_{R}^{2}}{(\tau_{R} + l / \lambda_{B_{i}}) \cdot (\tau_{R} + l / \lambda_{P_{o}})}$$
(3)

from which the residence time, τ_R is determined as

$$x_{\rm R} = \frac{-b + (b^2 - 4ac)^{1/2}}{2a}$$
(4)

where

$$\begin{aligned} a &= \lambda_{Pb} N_{Pb} - \lambda_{Po} N_{Po} \\ b &= c \lambda_{Pb} N_{Pb} \cdot (1/\lambda_{Bi} + 1/\lambda_{Po}) \\ c &= -\lambda_{Po} N_{Po} \cdot (1/\lambda_{Bi} \lambda_{Po}) \\ \lambda_{Bi} &= 0.138/d \text{ and } \lambda_{Po} = 5 \times 10^{-3}/d \end{aligned}$$
(5)

The ratio of the activities $\lambda_{Po} N_{Po} / \lambda_{Pb} N_{Pb}$ in Eq. (3) varied from 0.054 to 0.092 (Moore *et al.*, 1972).

The residence time, τ_R can also be determined through the ratio of the activities of radon, ^{222}Rn , λ_{Rn} N_{Rn} and ^{210}Pb , λ_{Pb} N_{Pb} in air according to the sequential disintegrations in the α - and β -decay scheme as

²²²Rn (α , 3.824 d) \rightarrow ²¹⁸Po (α , 3.05 min) \rightarrow ²¹⁴Pb (β -, 26.8 min) \rightarrow ²¹⁴Bi (β -,19.7 min) \rightarrow ²¹⁴Po (α , 164 µs) \rightarrow ²¹⁰Pb (β -, 22.3 y)

and the Eq. (2) by the formula

$$\tau_{\rm R} = 1/\lambda_{\rm Pb} \cdot \frac{1}{(\lambda_{\rm Rn} \, N_{\rm Rn} / \lambda_{\rm Pb} \, N_{\rm Pb}) - 1} = 1/\lambda_{\rm Pb} \cdot (\lambda_{\rm Pb} \, N_{\rm Pb} / \lambda_{\rm Rn} \, N_{\rm Rn})$$
(6)

where $\lambda_{Pb}=8.5\times10^{-5}\!/d$ is the decay constant of ^{210}Pb and λ_{Rn} N_{Rn} / λ_{Pb} $N_{Pb}>>1.$

The ratio of the activities $\lambda_{Rn} N_{Rn} / \lambda_{Pb} N_{Pb}$ in Eq. 6 varied from 282 to 7700 (Moore *et al.*, 1972).

Taking into account the ²¹⁰Bi/²¹⁰Pb ratios as determined in twenty one measurements of aerosol samplings carried out during an annual period at Oak Ridge, Tennessee at temperate latitude (35°58'N, 84°17'W) with high precipitation (wet climate), the estimated residence time of atmospheric aerosols in the boundary layer varied from 4.8 to 15.3 days (average 8.2 days).

Table 2 shows data for the residence times τ_R of atmospheric aerosol particles associated with radon, ²²²Rn and radon decay products ²¹⁰Pb, ²¹⁰Bi and ²¹⁰Po. The reported from the literature τ_R values are also shown in Table 2 and analyzed as follows:

Poet *et al.* (1972) estimated tropospheric aerosol residence times ranging from 1.59 to 13 days (average 5.4 days) when based on the ${}^{210}\text{Bi}/{}^{210}\text{Pb}$ activity ratios and from 11 to 77 days (average 24 days) when based on the ${}^{210}\text{Po}/{}^{210}\text{Pb}$ activity ratios for twenty measurements of aerosol samplings carried out in surface air during a 4 ${}^{1}\!/_{2}$ -year period at Boulder, Colorado (40°01'N, 105°17'W). They concluded that, a mean tropospheric residence time of about 4 days could be applied for aerosol particles in the lower troposphere and about a week for aerosol particles in precipitation. They also found that the mean aerosol residence time increases with altitude within troposphere less than by a factor of 3 (Moore *et al.*, 1973).

Francis *et al.* (1970) estimated a mean atmospheric residence time for ²¹⁰Pb of 9.6 days \pm 20% based on the ²¹⁰Po/²¹⁰Pb activity ratios from the dust of filtrate (> 0.22 µm) collected during a 3-month period (May-August) at Madison, Wiskonsin (43°05'N, 89°22'W).

Marley *et al.* (2000) estimated residence times for seven aerosol samples collected at Argonne, Illinois (41.7°N, 88.0°W) during a 2-year period, three aerosol samples collected at Phoenix, Arizona, one sample collected at Socorro, New Mexico, and five samples collected at Mexico city, Mexico. Based on the ²¹⁰Bi/²¹⁰Pb activity ratios, they resulted in residence times of 6 to 67 days, while based on the ²¹⁰Po/²¹⁰Pb activity ratios, they suggested residence times of 33 to 66 days for the aerosols below 2 µm in size.

Much earlier, Fry and Menon (1962) in twelve measurements carried out during a 7-month period (spring and summer) at Fayetteville, Arkansas ($36^{\circ}03$ 'N, $78^{\circ}54$ ''W), indicated apparent aerosol residence times ranging from 2.4 to 25.6 days (average 8.5 days), based on the 210 Bi/ 210 Pb activity ratios in Arkansas rains. Gavini *et al.* (1974) also estimated residence times varied from 3 to 240 days (average 29 days) from the 210 Bi/ 210 Pb activity ratios in Arkansas rains also.

Baskaran and Shaw (2001) based on the ²¹⁰Po/²¹⁰Pb activity ratios estimated residence times of arctic haze aerosols, from the upper atmosphere to the arctic atmosphere, varied between 12 and 32 days from the measurements carried out during an 1 1/2 – year period (winter) at Poker Flat (65.1°N, 147.5°W) and between 0 and 39 days from eight measurements carried out during a 2month period (winter) at Eagle (69.5°N, 141.2°W) in Alaska.

Very early, Lehman and Sittkus (1959) estimated aerosol residence times of 20 days from the ²¹⁰Po/²¹⁰Pb activity ratios in air at Freiburg, Germany (47°59'N, 7°51'E), while Peirson *et al.* (1966) estimated aerosol residence times of 40 days from the ²¹⁰Po/²¹⁰Pb activity ratios in air at Milford Haven, Wales (51°40'N, 5°02'E). Lambert *et al.* (1980) estimated aerosol

	Tuble 2: Residence	e unico, e _R or dopospher	ie derosons (dugs).	
Investigation	²¹⁰ Bi/ ²¹⁰ Pb	²¹⁰ Po/ ²¹⁰ Pb	²²² Rn/ ²¹⁰ Pb	Reference
Oak Ridge, Tennessee (35°58'N, 84°30'W)	4.8-15.3 (avg. 8.2)	-	-	This work
Boulder, Colorado	1.59-13.0 (avg. 5.4)	11-37	-	Poet et al. (1972)
(40°01'N, 105°17'W)	-	-	2.2,3.4	Moore et al. (1972)
Argonne, Illinois (41.7°N, 88.0°W)	6-67	33-66	-	Marley et al. (2000)
Madison, Wisconsin (43°05'N, 89°22'W)	-	9.6	-	Francis et al. (1970)
Fayetteville, Arkansas	2.4-25.6 (avg. 8.5)	-	-	Fry and Menon (1962)
(35°°3'N, 78°54'W)	3-240 (avg. 20)	2-320 (avg. 40)	-	Gavini et al. (1974)
Poker Flat, Alaska (65.1°N, 147.2°W)	-	11.9-32	-	Baskaran and Shaw (2001)
Eagle, Alaska (69.5°N, 141.2°W)	-	0-38.9	-	
Jungfraujoch, Switzland (46°32'N, 07°59'E)	-	1-12 (avg. 6)	-	Gäggeler et al. (1995)
Freiburg, Germany (47°59'N, 7°51'E)	-	20	-	Lehmann and Sittkus (1959)
Gif-sur-Yvette, France	8.8-10.5	-	6.5	Lambert et al. (1980)
(48°52'N, 2°20'E)	7-9		6.77	Lambert et al. (1983)
Milford Haven, Wales (51°40'N, 5°02'W)	-	40	-	Peirson et al. (1966)
Bombay, India (18°58'N, 72°50'E)	8	-	-	Rangarajan (1992)
El-Minia, Egypt 28°04'N, 30°45'E)	4.3-12.8 (avg. 9.83)	-	-	Ahmed et al. (2000)

Table 2. Residence times, $\tau_{\rm P}$ of tropospheric aerosols (days).

residence times varied from 8.8 to 10.5 days based on the $^{210}\text{Bi}/^{210}\text{Pb}$ activity ratios in air, while later in another work they estimated aerosol residence times varied from 7 to 9 days (average 8.58 days) based on the $^{210}\text{Bi}/^{210}\text{Pb}$ activity ratios in air, in near Paris, France area during a 6-year period (Lambert *et al.*, 1983).

Gäggeler *et al.* (1995) during an one-year period carried out measurements on the activities of 214 Pb, 210 Pb and 212 Pb in air at high altitude in Jungfraujoch, Switzerland (46°32'N, 07°59'E) as high as 3450 m by using an epiphaniometer. They estimated aerosol residence times varied between 1 and 12 days (average 6 days) from the 214 Pb/ 210 Pb activity ratios.

Finally, Rangarajan (1992) based in the ²¹⁰Bi/²¹⁰Pb activity ratios in air estimated a mean residence time of the natural radioactive aerosols in the planetary boundary layer at Bombay (Mumbai), India (18°58'N, 72°50'E) around 8 days from forty three measurements carried out during the long dry period, from October to May.

The data of Table 2 admit residence times of lower values as low as 1.59 days and higher values as high as 320 days. Mostly, the lower $\tau_{\rm R}$ -values were resulted from the ²¹⁰Bi/²¹⁰Pb activity ratios and higher $\tau_{\rm R}$ -values from the ²¹⁰Po/²¹⁰Pb activity ratios. Low $\tau_{\rm R}$ -values were also resulted from the ²²²Rn/²¹⁰Pb activity ratios. Poet *et al.* (1972) concluded that longer apparent residence time values were based on the ²¹⁰Po/²¹⁰Pb activity ratios, than those based on the ²¹⁰Bi/²¹⁰Pb activity ratios. The difference may be explained by the presence of a mixture of aerosols of various apparent ages, of which older aerosols (those of greater ages) contribute most of ²¹⁰Po. On the other hand, the solid products of radon-decay, that is ²¹⁰Pb, ²¹⁰Bi and ²¹⁰Po might arise from sources other than radioactive decay within the atmosphere. Poet *et al.* (1972) showed that up to 85% of the ²¹⁰Po in the atmosphere is of terrestrial origin, and the vertical profile of ²¹⁰Po was found to differ appreciably from that expected from the decay of ²²²Rn. Lambert *et al.* (1979) indicated that volcanic gases are very rich in long-lived radon decay products, especially in ²¹⁰Po relative to ²¹⁰Pb. Soil particles are the most likely contributors, since a part of the tropospheric aerosols originates at the Earth's surface. Coal burning and forests fires presumably are additional sources of radionuclides.

Apart of this, Papastefanou (2008) estimated the residence times of another radionuclide in ambient aerosols, that is ⁷Be (T $\frac{1}{2} = 53.3$ d) of cosmogenic origin varying between 7.4 and 8.9 days (average 8 days) at Thessaloniki, Greece (40°38'N, 22°58'E) in the category of the lower values of the residence times of atmospheric aerosols and leading to the same result for the residence times of radon decay product aerosols in ambient air varying between 4.8 and 15.3 days (average 8.2 days). The method used for the determination of the residence time of ⁷Be aerosols was described elsewhere (Papastefanou, 2008).

CONCLUSIONS

The aerodynamic size distributions of radon decay product aerosols in ambient air were measured using low-pressure (LPI) and conventional (1-ACFM) and/or high volume (HVI) cascade impactors. Lead-214 and ²¹²Pb were largely associated with aerosol particles in the accumulation mode for smaller than 0.52 µm diameter particles in size. Based on the 46 % low-pressure impactor measurements, the mean activity median aerodynamic diameter "AMAD" of 214 Pb-aerosols was found to be 0.16 μ m, while for the ²¹²Pb-aerosols, the mean AMAD was found to be 0.12 μ m. The slightly larger size of ²¹⁴Pb-aerosol particles confirmed with operationally different cascade impactors, was attributed to α -recoil-driven redistribution of ²¹⁴Pb following the decay of the aerosol-associated ²¹⁸Po. Even considering recoil following ²¹⁴Po α -decay, the average ²¹⁰Pb-labelled aerosols grow by a factor of two during its atmospheric lifetime. Estimated lifetimes of radon decay product aerosols in ambient air resulted in a mean residence time of about 8 days that could be applied to aerosol particles in the lower atmosphere below the boundary layer.

NOMENCLATURE

normal flow rate cascade impactor
activity median aerodynamic diameter
cubic feet per meter
particle diameter
effective cutoff diameter
high-volume cascade impactor
low-pressure cascade impactor
molar solution
mass median aerodynamic diameter
number of radioactive nuclei
on-line alpha cascade impactor
surface median aerodynamic diameter

Greek symbols

λ	radioisotope disintegration rate
σ_{g}	geometric standard deviation
τ	radioisotope mean life
$\tau_{\rm R}$	residence time of aerosol particles

REFERENCES

- Ahmed, A.A., Mohammed, A., Ali, A.A., El-Hussein, A. and Barakat, A. (2000). A study on Aerosol Residence Time in El-Minia, Egypt. J. Aerosol Sci. 31: 470-471.
- Baskaran, M. and Shaw, G.E. (2001). Residence Time of Arctic Haze Aerosols Using the Concentrations and Activity Ratios of ²¹⁰Po, ²¹⁰Pb and ⁷Be. *J. Aerosol Sci.* 32: 443-452.
- El-Hussein, A. and Ahmed, A.A. (1995). Unattached Fraction and Size Distribution of Aerosol-attached Radon Progeny in the Open Air. *Appl. Radiat. Isot.* 46: 1393-1399.
- El-Hussein, A., Mohammed, A. and Ahmed, A.A. (1998). A Study on Radon and Radon Progeny in Surface Air of El-Minia, Egypt. *Radiat. Prot. Dosim.*78: 139-145.
- Francis, C.W., Chesters, G. and Haskin, L.A. (1970). Determination of ²¹⁰Pb Mean Residence Time in the Atmosphere. *Environ. Sci. Technol.* 4: 586-589.
- Friedlander, S.G. (2000). *Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics.* 2nd Edn. Oxford University Press, New York.
- Fry, L.M. and Menon, K.K. (1962). Determination of the Tropospheric Residence Time of Lead-210. *Science*. 137: 994-995.
- Gäggeler, H.W., Jost, D.T., Baltensperger, U. and Schwikowski, M. (1995). Radon and Thoron Decay Product and ²¹⁰Pb Measurements at Jungfraujoch, Switzerland. *Atmos. Environ.* 29: 607-616.
- Gavini, M.B., Beck, J.N. and Kuroda. P.K. (1974). Mean Residence Times of the Long-lived Radon Daughters in the Atmosphere. J. Geophys. Res. 79: 4447-4452.
- George, A.C. and Breslin, A.J. (1980). The Distribution of Ambient Radon and Radon Daughters in Residential Buildings in the New Jersey-New York Area. Proceedings of the 3rd International Symposium on Natural Radiation Environment, CONF-780422, Vol. 2, p. 1272-1292, National Technical Information Service, Springfield, Va.
- George, A.C., Knutson, E.O., Sinclair, D., Wilkening, M.H. and Andrews, L. (1984). Measurements of Radon Daughter Aerosols in Socorro, New Mexico. *Aerosol Sci. Technol.* 3: 277-281.
- Grundel, M. and Porstendörfer, J. (2004). Differences between the Activity Size Distributions of the Different Natural Radionuclide Aerosols in Outdoor Air. *Atmos. Environ.* 38: 3723-3728.
- Jaworowski, Z. (1963). *Air Chemistry and Radioactivity*. Academic Press, New York.

- Lambert, G., Buisson, A., Sanak, J. and Ardouin, B. (1979). Modification of the Atmospheric Polonium-210 to Lead-210 Ratio by Volcanic Emissions. J. Geophys. Res. 84: 6980-6986.
- Lambert, G., Ardouin, B., Buison, A., Jegou, A., Le Roulley, J.C., Polian, G. and Sanak, J. (1980). *Cycle De Radon Et De Aes Descendants: Applications a L'etude Des Echanges Troposphere-stratosphere*. C.R Fin d'etude De Recherché DGRST.
- Lambert, G., Sanak, J. and Polian, G. (1983). Mean Residence Time of Submicrometer Aerosols in the Global Troposphere. *Precipitation Scavenging, Dry Deposition and Resuspension*. Pruppacher, H.R., Semonin, R.G. and Slinn, W.G.N. (Ed.), Elsevier, New York, p. 1353-1359.
- Lehmann, L. and Sittkus, A. (1959). Bestimmung Von Aerosolverweilzeiten Aus Fen RaD Und RaF-Gehalt Der Atmospharischen Luft Und Des Niederschlages. *Naturwissenschaft*. 46: 9-10.
- Marley, N.A., Gaffney, J.S., Drayton, P.J., Cunningham, M.M., Orlandini, K.A. and Paode, R. (2000). Measurement of ²¹⁰Pb, ²¹⁰Po and ²¹⁰Bi in Size-fractionated Atmospheric Aerosols: An Estimate of Fine-aerosol Residence Times. *Aerosol Sci. Technol.* 32: 569-583.
- Mercer, T. (1976). The Effect of Particle Size on the Escape of Recoiling RaB Atoms from Particulate Surfaces. *Health Phys.* 31: 173-175.
- Mohammed, A. (1999). Activity Size Distributions of Short-lived Radon Progeny in Indoor Air. *Radiat. Prot. Dosim.* 86: 139-145.
- Mohammed, A., El-Hussein, A. and Ali, A.E. (2000). Measurements of Thorium-B (²¹²Pb) in the Outdoor Environment and Evaluation of Equivalent Dose. *J. Environ. Radioact.* 49: 181-193.
- Moore, H.E., Poet, S.E. and Martell, E.A. (1972). Tropospheric Aerosol Residence Times Indicated by Radon and Radon-Daughter Concentrations. *Natural Radiation Environment II*. Adams J.A.S., Lowder, W.M. and Gessel, T.F. (Ed.). CONF-720805-P2, Technical Information Center/U.S. Department of Energy, Washington, D.D, p. 775-786.
- Moore, H.E., Poet, S.E. and Martell, E.A. (1973). ²²²Rn, ²¹⁰Pb, ²¹⁰Bi and ²¹⁰Po Profiles and Aerosol Residence Times Versus Altitudes. *J. Geophys. Res.* 78: 7065-7075.
- Papastefanou, C. (2008). Beryllium-7 Aerosols in Ambient Air. Aerosol Air Qual. Res. 9: 187-197.
- Peirson, D.H., Cambray, R.S. and Spicer, G.S. (1966). Lead-210 and Polonium-210 in the Atmosphere. *Tellus*. 18: 427-433.
- Poet, S.E., Moore, H.E. and Martell, E.A. (1972). Lead-210, ²¹⁰Bi, and ²¹⁰Po in the Atmosphere: Accurate Ratio and Application to Aerosol Residence Time Determination. *J. Geophys. Res.* 77: 6515-6527.
- Porstendörfer, J. and Mercer, T. (1980). Diffusion Coefficient of Radon Decay Products and their Attachment Rate to the Atmospheric Aerosol. *Natural Radiation Environment III*. Gesell, T.F. and Lowder, W.M. (Ed.) CONF.780422, Vol. 1, National Technical Information Service, Springfield, Virginia, p. 281-293.
- Rangarajan, C. (1992). A Study of the Mean Residence Time of the Natural Radioactive Aerosols in the Planetary Boundary Layer. J. Environ. Radioact. 15: 193-206.
- Röbig, G., Becker, K.H., Hessin, A. and Porstendörfer, J. (1980). A Cascade Impactor Calibration for Measurement of Activity Size Distributions in the Atmosphere. *Proceedings of the 8th Conference in Aerosol Science*, Georg-August-University, Göttingen, Germany, p. 96-102.
- Soilleux, P.J. (1970). The Measurement of the Size Spectrum and Charge to Total Ratio of Condensation Nuclei Having Naturally Occurring Radon Daughter Products Attached to Them. *Health Phys.* 12: 245-254.

Suzuki, T., Maruyama, Y., Nakayama, N., Yamada, K. and Ohta, K. (1999). Measurement the ²¹⁰Po/²¹⁰Pb Activity Ratio in Size Fractionated Aerosols from the Coast of Japan Sea. *Atmos. Environ.* 33: 2285-2288.

Winkler, R., Dietl, F., Frank, G. and Tschiersch, J. (1998).

Temporal Variation of ⁷Be and ²¹⁰Pb Size Distributions in Smbient Aerosol. *Atmos. Environ.* 32: 983-991.

Received for review, February 6, 2009 Accepted, April 10, 2009