Characterization of Atmospheric Ammonia over Xi'an, China Jun-Ji Cao^{1,2*}, Ting Zhang¹, Judith C. Chow³, John G. Watson³, Feng Wu¹, Hua Li¹ # **Abstract** Continuous measurements of atmospheric ammonia (NH₃) between April 2006 and April 2007 were conducted at an urban site and a suburban site in Xi'an, northwest China. NH₃ was collected using Ogawa passive samplers every sixth day. At the same time, NH₄⁺ in fine particles was collected using battery-powered mini-volume samplers. The annual average concentrations of NH₃ were 12.9 $\mu g/m^3$ and 14.1 $\mu g/m^3$, at the urban and suburban sites, respectively. The NH₃ concentrations reached a maximum (~22.8-35.3 $\mu g/m^3$) in June and July and were minimum (~3.0-4.7 $\mu g/m^3$) in December, which was closely linked with NH₃ volatilization under different ambient temperatures. The seasonal variation in NH₃ was summer > spring > autumn > winter at both sites, which may be ascribed to the impact of biological emission sources such as agricultural activity. NH₃ and NH₄⁺ aerosol concentrations were weakly correlated, implying that gas-particle reactions are influenced by many factors such as sources, meteorology and removal. Average NH₃/NH₄⁺ ratios varied from 0.1 to 25.3, with an annual average of 4.0. High NH₃ concentrations at Xi'an had a significant influence on atmospheric acidity and the formation of secondary NH₄⁺ aerosol. **Keywords:** NH₃; NH₄⁺; Aerosol, Agricultural activity. # INTRODUCTION Atmospheric ammonia (NH₃) is an air pollutant of increasing interest, and along with sulfur dioxide (SO₂) and nitrogen oxides (NO_x), is one of three main primary pollutants *Corresponding author. E-mail address: cao@loess.llqg.ac.cn leading to acidic deposition. In the past, much more attentions has been paid to SO₂ and NO_x, than to NH₃. However, with decreasing SO₂ emissions throughout Europe, and an increased appreciation of the role of NH₃ and NO_x in causing eutrophication of ecosystems, scientific attention on NH₃ has grown (Sutton *et al.*, 1998). As the dominant basic atmospheric species, NH₃ can react with acidic ¹ SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, China ² Department of Environmental Science, Xi'an Jiaotong University, Xi'an, China ³ Division of Atmospheric Sciences, Desert of Research Institute, Reno, USA species form ammonium sulfate. ammonium nitrate, or ammonium chloride, or may be deposited on the Earth's surface (Aneja et al., 2000). Due to neutralization reactions which involve rapid gas-to-particle conversion (Lemmetty et al., 2007), NH₃ has recently come under scrutiny with respect to fine particulate matter $(PM_{2.5})$ regulations, impacting human health, visibility, and climate change (Barthelmie and Pryor, 1998). The high NH₃ concentration in Asia reflects increasing NH₃ emissions from agricultural activities (including fertilizer use), livestock and the use of biofuels (such as animal dung) as domestic fuel (Carmichael et al., 2003). Ammonia is highly soluble in water and its major sink in the atmosphere is via wet deposition. The residence time of NH₃ in the lower level of the atmosphere is a few hours, although in a calm environment it may exist for one week (Kapoor et al., 1992). In addition, due to its high reactivity, NH₃ exhibits a relatively short atmospheric lifetime, so its ambient concentration is greatly influenced by local sources. Thus, it has become clear that NH₃ is an important gas in relation to different environmental issues. Sufficient data on NH₃ concentrations have been reported from various remote, rural, urban and suburban sites in the world (Galloway *et al.*, 1987; Khemani *et al.*, 1987; Kulshrestha *et al.*, 1996; Lenhard and Gravenhorst, 1980; Likens *et al.*, 1987; Possanzini *et al.*, 1988; Tuncel and Ungor, 1996; Chou and Wang, 2007). However, to date the concentrations and temporal variation of NH₃ in China are currently unknown. Xi'an is located on the Guanzhong Plain, one of the national food producing areas of China, at the south edge of the Loess Plateau 400 m above sea level at 33°29'-34°44' N, 107°40'-109°49' E. Xi'an is also the largest city in northwestern China with a population of about seven million, which is a typical urban environment in north China. In this work, a one-year NH₃ monitoring program between April 2006 and April 2007 was performed at two monitoring stations in order to better understand the atmospheric concentration of ammonia, its temporal variation and possible sources. # **EXPERIMENT** # Sampling Sites Two sites were selected for study. The field descriptions are as follows and the location of the sites are shown in Fig. 1. Institute of Earth Environment site: This monitoring site was located in an urban-scale zone surrounded by a residential area ~15 km south of downtown Xi'an. It was situated on the rooftop of the Institute of Earth Environment, Chinese Academy of Sciences building, 10 m above ground level, and represented the urban monitoring site. Emperor Qin's Terra-Cotta Museum site: This monitoring site was located on the third floor roof (~10 m above ground level) of the Emperor Qin's Terra-Cotta Museum in Lintong district, which is about 40 km southeast of downtown Xi'an. It is considered a suburban microenvironment. Fields around the site are covered with a variety of fruit trees Fig. 1. The sampling locations in Xi'an, China and agricultural activity is the major NH₃ emission. #### Sample Collection Ammonia samples were collected using Ogawa passive samplers (Ogawa USA., Inc., Pompano Beach. Florida. USA. ogawausa.com). The Ogawa passive sampler is a useful tool for monitoring atmospheric NH₃ concentrations. The advantages of passive samplers are that they are less expensive, easily deployed and do not require access to electricity (Rabaud et al., 2001; Carmichael et al., 2003; Roadman et al., 2003). The efficacy of passive samplers in measuring atmospheric NH₃ shown previous studies (Tate, 2002; Carmichael et al., 2003; Thöni et al., 2003; Wilson and Serre, 2007) helped in the selection of passive sampling use in this study. Ammonia was collected on 14.5 mm citric acid-coated cellulose filters every sixth day from 15 April 2006 to 14 April 2007 at the two sampling sites. Daily aerosol (PM_{2.5}) samples were collected using the battery-powered minivolume samplers (Airmetrics, Oregon, USA) operating at flow rates of 5 L/min (Cao *et al.*, 2006; Huang *et al.*, 2007). PM samples were collected on 47 mm Whatman quartz microfiber filters (QM/A). # NH₃ and NH₄⁺ Analyses After collection, samples were refrigerated at 4°C. The NH₃ and PM_{2.5} filters were then transferred (using forceps) to acid- washed glass vials containing 3.0 and 10.0 mL of deionized water, respectively. The vials were sonicated for 60 min, and the extract was filtered through a 13-mm diameter, 0.2-mm Acrodiscs in-line filter using a 10 ml syringe. The syringe and filter were pre-rinsed with deionized water and 1-2 mL of sample solution. Filtering removes glass-fiber filter particles, which cause positive absorbance artifacts during analysis. The ammonium citrate extract was analyzed using Dionex-600 Ion Chromatography (Dionex Inc., Sunnyvale, CA, USA) with a CG12A 4 mm guard column and a CS12A 4 mm analytical column. The CSRS (cation self-regenerating suppressor) was set at 62 mV. The detector used was a CD25A conductivity detector. The eluent was methanesulfonic acid (MSA). A mass transfer coefficient of 0.249 cm²/s was utilized to calculate the NH₃ concentrations from NH₄⁺ (Tate. 2002). measurements concentrations of NH₃ and NH₄⁺ in PM_{2.5} filters were corrected using field blanks. # RESULTS AND DISCUSSION # Temporal Variations of Ammonia Fig. 2 shows the temporal variation in NH₃ observation sites. two concentrations of NH₃ at the urban site ranged from $0.35 \mu g/m^3$ to $40.0 \mu g/m^3$, with an annual $\mu g/m^3$. average of 12.9 The NH_3 concentrations at the suburban site tended to be slightly higher than those at the urban site, and varied from 0.86µg/m³ to 54.8µg/m³, with an annual average of 14.1µg/m³. The NH₃ concentrations at the urban site were highly correlated with those at the suburban site (r = 0.74, significance level 99%). The high correlation of NH₃ at two typical sites may point to the regionally uniform distribution of NH₃ concentration in Xi'an and showed no evidence that local point sources of NH₃ dominated ambient measurements. The NH₃ concentrations at the urban and suburban sites showed a similar trend, i.e., NH₃ increased gradually from April to July, and reached the highest values during June and July, and then decreased until the following March. The peak NH3 value was 37.0 μ g/m³ at the urban site and was 54.8 μg/m³ at the suburban site in July. NH₃ concentrations and ambient temperatures in June and July reached maximum values with minimum values in January. The annual average temperature was found to be 16.0°C, with the highest daily temperature (32°C) in July and the lowest temperature (0°C) in January at the urban site. The annual average temperature was 15.6°C at the suburban site, with the highest daily temperature (33.5°C) in June and the lowest temperature (-1.4°C) in January. NH₃ levels were found to be highly correlated (r = 0.68 for the urban site, r = 0.72the suburban site) with ambient temperature. As expected, ambient NH₃ concentrations showed a positive correlation with temperature because increasing temperatures: (i) increased NH₃ sources by enhancing volatilization of NH₃ and (ii) decreased the stability of NH₄NO₃ aerosols. studies have Various shown strong correlations between air temperature and ammonia concentration, suggesting that **Fig. 2.** Temporal variations of NH₃, temperature and wind speed. Black curves refers to these variables at urban site and red curves refers to these variables at suburban site. temperature is an important variable in influencing NH₃ volatilization from animal waste (Aneja et al., 2000). NH₃ levels were found to be poorly correlated (r = -0.19 for the urban site, r = -0.08 for the suburban site) with wind speed, which indicated that dispersion conditions were good at both sites. NH₃ concentrations decreased dramatically during August and September, reflecting important role wet removal plays influencing the temporal variation in ambient NH_3 levels, which is consistent with increasing relative humidity promoting the formation and stability of NH₄⁺ aerosols. NH₃ values increased significantly in October at both sites, which can be ascribed to the impact of biomass burning after the harvest season on the Guangzhou plain (Cao et al., 2005). The monthly average NH₃ concentrations at the two sites are summarized in Table 1. Monthly averages were maximum in July and minimum in December. NH3 at the urban and suburban site were 28.4 μ g/m³ and 35.3 μ g/m³, July, which respectively, in approximately 5 and 10 times higher than those in December. At the suburban site, the monthly average NH₃ concentrations followed the order July > June > May > April > August October > September, while NH₃ concentrations were less than 10.0 µg/m³ in the remaining months. The variations in NH₃ concentrations at both sites were quite similar, indicating that NH₃ concentrations were primarily related to contributions from area emission sources such as agricultural activities. **Table 1.** Concentrations of NH₃ at Xi'an (μg/m³) | Month | | 06-Apr | 06-May | 06-Jun | 06-Jul | 06-Aug | 06-Sep | 06-Oct | 06-Nov | 06-Dec | 07-Jan | 07-Feb | 07-Mar | |------------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Urban
site | Average | 18.7 | 14.7 | 22.8 | 28.4 | 9.7 | 13.9 | 17.2 | 8.5 | 4.7 | 7.0 | 7.4 | 6.0 | | | Max. | 19.1 | 17.4 | 30.8 | 37.0 | 18.2 | 19.6 | 24.0 | 14.9 | 9.1 | 8.6 | 10.8 | 8.5 | | | Min. | 18.1 | 11.1 | 16.2 | 23.5 | 0.4 | 9.2 | 8.6 | 5.0 | 2.3 | 5.3 | 1.9 | 2.4 | | Suburban
site | Average | 17.7 | 18.8 | 24.2 | 35.3 | 16.1 | 10.5 | 16.0 | 4.8 | 3.0 | 4.0 | 4.6 | 9.5 | | | Max. | 21.7 | 23.4 | 37.1 | 54.8 | 22.7 | 16.1 | 28.5 | 8.6 | 7.0 | 7.8 | 5.1 | 17.7 | | | Min. | 11.9 | 16.5 | 17.7 | 28.4 | 7.1 | 1.1 | 0.9 | 0.9 | 1.0 | 1.0 | 3.3 | 1.8 | #### Seasonal Variations Fig. 3 shows the distribution of NH₃ concentrations over four seasons. Seasonal average concentrations of NH₃ were 16.2 $\mu g/m^3$, 20.3 $\mu g/m^3$, 14.7 $\mu g/m^3$ and 6.1 $\mu g/m^3$ in spring, summer, autumn and winter, respectively, at the urban site. Seasonal average concentrations of NH₃ were 18.4 $\mu g/m^3$, 25.2 $\mu g/m^3$, 11.9 $\mu g/m^3$ and 3.6 $\mu g/m^3$ in spring, summer, autumn and winter, respectively, at the suburban site. The seasonal variation in NH₃ was summer > spring > autumn > winter at both sites. The seasonal changes in NH₃ levels are consistent with the view that NH₃ originates largely from natural emissions, which are at a minimum during winter. Higher concentrations during the summer season may reflect both higher volatility of NH₃ and the influence of fertilizer application to surrounding farmland during this period. Higher NH₃ volatility from city garbage and animal husbandry activities can also increase ambient NH₃ concentrations during the summer months. Low NH₃ concentrations in winter were probably due to reduced NH₃ volatilization when the air temperature was frequently below freezing and there was snow cover on the fields, as well as infrequent agricultural activities. These findings also indicated that non-biological emission sources such as industrial production and vehicle emissions did not have a significant impact on the distribution of ambient NH₃. Similar seasonal trends in NH₃ were also found in other studies (Danalatos and Glavas, 1999; Bari *et al.*, 2003). These authors suggested that high levels of NH₃ were associated with high volatility of particulate NH₄⁺ under high temperatures in summer. The scatter of NH₃ at the suburban site was larger than at the urban site in spring, summer, and autumn (Fig. 3). During winter, the scatter of NH₃ at the suburban site was smaller than that at the urban site. The large scatter of NH₃ at the suburban site may be due to NH₃ emissions originating mainly from agricultural sources and their spatial distribution was therefore closely linked to agricultural production. However, the NH₃ concentrations at the suburban site were closer during winter, which can be attributed largely to reduced NH₃ volatilization as a result of frozen surfaces in the surrounding farmland. **Fig. 3.** Distribution of NH₃ concentrations during four seasons. The box plots indicate the mean 6-day concentration and the min, 1st, 25th, 50th, 75th, 99th and max percentiles. A normal curve is fitted to the measurements. # Relationship between NH_3 and NH_4^+ in Fine Aerosol NH₃ is the only alkaline gas in the atmosphere, and thus plays a major role in the neutralization of atmospheric sulfuric and nitric acid. NH₃ readily reacts with these acids to form ammonium salts and thus is an important constituent of aerosols precipitation (Erisman et al., 1988). To realize the transformation of NH₃ and NH₄⁺, the NH₄⁺ in PM_{2.5} was simultaneously observed at the urban site. Fig. 4 illustrates the time series of NH₃ and NH₄⁺, where NH₄⁺ concentrations ranged between 0.83 µg/m³ and 34.0 µg/m³, with an average of 8.3 µg/m³. NH₄⁺ concentrations increased gradually from April to December and then decreased until the i.e., NH₄⁺ following April, followed a to NH₃. The different trend NH_3 concentrations were higher than concentrations in PM_{2.5} in spring and summer and were comparable to NH₄⁺ concentrations September and October. especially in However, NH₃ concentrations were less than NH₄⁺ concentrations in winter. Once emitted into the atmosphere, NH3 may undergo conversion to NH₄⁺ aerosol. The rate of this conversion, which is largely unknown, will have an important bearing on the regional impact of NH₃ distribution. The conversion of NH₃ to NH₄⁺ aerosol depends on the concentration of acids in the atmosphere, temperature, and water availability (Koerkamp et al., 1998; Kobara et al., 2007), as will flux rates of NH₃ (Nemitz et al., 2001). NH₃ concentrations were weakly correlated with NH₄⁺ concentrations and the Spearman correlation was not significant (r = 0.12). This suggests that gas-particle reactions are influenced by many factors (such as sources, meteorology and removal). Average NH₃/NH₄⁺ ratios varied from 0.1 to **Fig. 4.** Temporal variations of NH_3 and NH_4^+ in $PM_{2.5}$ at urban site (left), scatte plots between NH_3 and NH_4^+ concentrations (right). 25.3, with an annual average of 4.0. Most NH₃/NH₄⁺ ratios in this study were high when compared to a "background" value of 0.1 for a U.S. site and 0.5 in Europe as reported by Lindberg et al. (1990). This suggests that abundant NH₃ gas existed in the atmosphere over Xi'an. The rate of ammonification is influenced by temperature, pH and water availability. Higher NH₃/NH₄⁺ ratios were found in summer, implying that NH₃ gas is not neutralized completely by acidic species. However, most NH₃/NH₄⁺ ratios were close to or less than 1.0, which indicated that NH₃ gas was neutralized completely by acidic species due to decreased NH₃ in ambient air and increased SO₂ concentrations from residential heating during winter. # Comparison of NH_3 Concentration with Other Area Table 2 lists NH_3 levels at different urban and suburban sites throughout the world. The NH_3 level (12.9 $\mu g/m^3$) at the urban site in Xi'an was lower than that reported in Delhi, India $(32.6 \mu g/m^3)$ (Kapoor *et al.*, 1992), Lahore, Pakistan (21.1-81.3 µg/m³) (Biswas et al., 2008) and the Northern Adriatic area, Croatia (12-20 µg/m³) (Alebic-Juretic, 2008). NH₃ level at Xi'an was 2-5 times higher than that reported at Pune, India (2.0 µg/m³) (Khemani et al., 1987), Yokohama, Japan (5.3 μg/m³) (Yamamoto et al., 1988), Chicago, USA $(1.63 \mu g/m^3)$ (Lee *et al.*, 1993), Hamilton, Canada (4.28 µg/m³) (Brook et al., 1997), Nara, Japan (2.4 μg/m³) (Matsumoto & Okita, 1998), Seoul, South Korea (4.43 µg/m³) (Lee et al., 1999), Baltimore, USA (3.3 \pm 2.1 μg/m³) (Larsen et al., 2001), Salzburg, Austria $(2.7-28 \mu g/m^3)$, Munich, Germany (2.4-11)ug/m³) (Loflund et al., 2002), Zurich, Switzerland (7.5 µg/m³) (Thoni et al., 2003), Clinton, USA (5.32 µg/m³), Kinston, USA (2.46 µg/m³), Morehead City, USA (0.58 μg/m³) (Walker et al., 2004), Seoul, South Korea (4.81-6 μg/m³) (Kang et al., 2004) and Hong Kong (2.1 $\mu g/m^3$) (Yao *et al.*, 2006). NH₃ concentrations $(14.1 \mu g/m^3)$ at the suburban site in Xi'an was close to those in Agra, India $(10.2 \pm 6.4 \mu g/m^3)$ (Singh *et al.*, 2001), and the Northern Adriatic area, Croatia $(6-28 \mu g/m^3)$ (Alebic-Juretic, 2008). Higher levels of NH₃ at Xi'an were probably due to emissions from farmland, animal waste, ammonia-based fertilizers and soil. # **CONCLUSIONS** Measurements of atmospheric NH₃ using the Ogawa passive sampler technology were conducted between April 2006 and April 2007 at an urban and a suburban site in Xi'an. The annual average concentrations of NH3 were 12.9 μ g/m³ and 14.1 μ g/m³ at the urban and suburban sites, respectively. NH_3 concentrations reached a maximum in June and July and were minimum in January, which significantly associated with volatilization under different ambient temperatures. The seasonal variation in NH₃ was summer > spring > autumn > winter at **Table 2.** Comparison of NH₃ concentrations at Xi'an with other ares. (unit: μg/m³) | Location | Period | Type | Concentration | Reference | | | |---------------------|---------------------|------------------------|-------------------|------------------------------|--|--| | Vilan China | Ann 2006 Ann 2007 | Urban 12.88 ± 8.17 | | This study. | | | | Xi'an, China | Apr. 2006-Apr. 2007 | Suburban | 14.08 ± 11.12 | This study | | | | Pune, India | | Urban | 2.00 | Khemani et al. (1987) | | | | Yokahama, Janpan | | Urban | 5.30 | Yamamota et al. (1988) | | | | Delhi, India | | Urban | 32.60 | Kapoor et al. (1992) | | | | Chicago, USA | Apr. 1990-Mar. 1991 | Urban | 1.63 | Lee et al. (1993) | | | | Hamilton, Canada | 1992-1992 | Urban | 4.28 | Brook et al. (1997) | | | | Nara, Japan | June 1994-May 1995 | Urban | 2.40 | Matsumoto and Okita (1997) | | | | Seoul, South Korea | Oct. 1996-Sep. 1997 | Urban | 4.43 | Lee et al. (1999) | | | | Agra, India | July-Sep. 1997 | Suburban | 10.2 ± 6.4 | Singh et al. (2001) | | | | Baltimore, USA | Mar. 1997-Mar. 1999 | Urban | 3.3 ± 2.1 | Larsen et al. (2001) | | | | Salzburg, Austria | Aug. 2000-Jan. 2001 | Urban | 2.7~28 | Loflund <i>et al.</i> (2002) | | | | Munich, Germany | Aug. 2000-Jan. 2001 | Ulball | 2.4~11 | Lonund et al. (2002) | | | | Rome, Italy | May 2001-Mar. 2002 | Urban | 3.8~45.6 | Perrino et al. (2002) | | | | Zurich, Switzerland | Autumn 1999-2000 | Urban | 7.50 | Thoni et al. (2003) | | | | Clinton, USA | Jan. 2000-Dec. 2000 | | 5.32 | | | | | Kinston, USA | May 2000-Dec. 2000 | Urban | 2.46 | Walker et al. (2004) | | | | Morehead City, USA | Jan. 2000-Dec.2000 | | 0.58 | | | | | Seoul, South Korea | OctNov. 2001 | Urban | 4.81~6 | Kang et al. (2004) | | | | Hong Kong | Autumn 2000 | Urban | 2.1 | Yao et al. (2006) | | | | Northern Adriatic | 1998-2005 | Urban | 12~20 | Alebic-Juretic (2008) | | | | area, Croatia | 1996-2003 | Suburban | 6~28 | Alcoic-Juiclic (2000) | | | | Lahore, Pakistan | Dec. 2005-Feb. 2006 | Urban | 21.1~81.3 | Biswas et al. (2008) | | | | Munster, Germany | Jan. 2006. | Urban | <34.77 | Gietl et al. (2008) | | | both sites, which was ascribed to the impact biological emission sources such agricultural activity. NH₃ and NH₄⁺ aerosol were weakly concentrations correlated. implying that gas-particle reactions influenced by many factors such as source, and removal. meteorology High NH_3 concentrations at Xi'an had a significant influence on atmospheric acidity and the formation of secondary NH₄⁺ aerosol. # **ACKNOWLEDGEMENTS** This project is supported by the Natural Science Foundation of China (NSFC 40675081). #### REFERENCES - Alebic-Juretic, A. (2008). Airborne Ammonia and Ammonium within the Northern Adriatic Area, Croatia. *Environ. Pollut.* 154: 439-447. - Aneja, V.P., Chauhan, J.P., Walker, J.T. (2000). Characterization of Atmospheric Ammonia Emissions from Swine Waste Storage and Treatment Lagoons. *J. Geophys. Res.* 105: 11535-11545. - Bari, A., Ferraro, V., Wilson, L.R., Luttinge,r D., Husain, L. (2003). Measurements of Gaseous HONO, HNO₃, SO₂, HCl, NH₃, Particulate Sulfate and PM_{2.5} in New York. *Atmos. Environ.* 37: 2825-2835. - Barthelmie, R.J., Pryor, S.C. (1998). Implications of Ammonia Emissions for Fine Aerosol Formation and Visibility Impairment–A Case Study from the Lower - Fraser Valley, British Columbia. *Atmos. Environ.* 32: 345-352. - Biswas, K.F., Ghauri, B.M. and Husain, L. (2008). Gaseous and Aerosol Pollutants During Fog and Clear Episodes in South Asian Urban *Atmos. Environ.* 42: 7775-7785. - Brook, J.R., Wiebe, A.H., Woodhouse, S.A., Audette, C.V., Dann, T.F., Callaghan, S., Piechowski, M., DabekZlotorzynska, E. and Dloughy, J.F. (1997). Temporal and Spatial Relationships in Fine Particle Strong Acidity, Sulphate, PM₁₀ and PM_{2.5} Across Multiple Canadian locations. *Atmos. Environ.* 31: 4223-4236. - Cao, J.J., Wu, F., Chow, J.C., Lee, S.C., Li, Y., Chen, S.W., An, Z.S., Fung, K.K., Watson, J.G. and Zhu, C.S. (2005). Characterization and Source Apportionment of Atmospheric Organic and Elemental Carbon during Fall and Winter of 2003 in Xi'an, China. *Atmos. Chem. Phys.* 5: 3127-3137. - Cao, J.J., Lee, S.C., Ho, K.F., Fung, K., Chow, J.C. and Watson, J.G. (2006). Characterization of Roadside Fine Particulate Carbon and its 8 Fractions in Hong Kong. *Aerosol Air Qual. Res.* 6: 106-122. - Carmichael, G.R., Ferm, M., Thongboonchoo, N., Woo J.H., Chan, L.Y., Murano, K., Viet, P.H., Mossberg, C., Bala, R., Boonjawat, J. and others. (2003). Measurements of Sulfur Dioxide, Ozone and Ammonia Concentrations in Asia, Africa and South America Using Passive Samplers. *Atmos. Environ.* 37: 1293-1308. - Chou, M.S., Wang, C.H. (2007). Treatment of - Ammonia in Air Stream by Biotrickling Filter. *Aerosol Air Qual. Res.* 7: 17-32. - Danalatos, D. and Glavas, P. (1999). Gas Phase Nitric Acid, Ammonias and Related Particulate Matter at a Mediterranean Coastal Site, Patra, Greece. *Atmos. Environ*. 33: 3417-3425. - Erisman, J.W., Vermetten, A.W.M., Asman, W.A.H., Wayers-Ijpelaana, A. and Slanina, J. (1988). Vertical Distribution of Gases and Aerosols: Behaviour of Ammonia and Related Components in the Lower Atmosphere. *Atmos. Environ.* 22: 1153-1160. - Galloway, J.N., Zhao, D.W., Xiong, J. and Likens, G.E. (1987). Acid Rain: China, US and a Remote Area. *Science*. 230: 1559-1562. - Gietl, J.K., Tritscher, T. and Klemm, O. (2008). Size-segregated Analysis of PM₁₀ at Two Sites, Urban and Rural, in Munster (Germany) Using Five-stage Berner Type Impactors. *Atmos. Environ.* 42: 5721-5727. - Huang, H., Cao, J.J., Lee, S.C., Zou, C.W., Chen, X.G. and Fan, S.J. (2007). Spatial Variation and Relationship of Indoor/outdoor PM_{2.5} at Residential Homes in Guangzhou City, China. *Aerosol Air Qual. Res.* 7: 518-530. - Kang, C.M., Lee, H.S., Kang, B.W., Lee, S.K. and Sunwoo, Y. (2004). Chemical Characteristics of Acidic Fas Pollutants and PM_{2.5} Species during Hazy Episodes in Seoul, South Korea. *Atmos. Environ.* 38: 4749-4760. - Kapoor, R.K., Singh, G. and Tiwari, S. (1992). Ammonia Concentration Vis-a-vis - Meteorological Conditions at Delhi, India. *Atmos. Res.* 28: 1-9. - Khemani, L.T., Momin, G.A., Naik, M.S., Rao, P.S.P., Safai, P.D. and Murty, A.S.R. (1987). Influence of Alkaline Particulates on pH of Cloud and Rain Water in India. Atmos. Environ. 21: 1137-1145. - Kobara, H., Takeuchi, K. and Ibusuki, T. (2007). Effect of Relative Humidity on Aerosol Generation through Experiments at Low Concentrations of Gaseous Nitric Acid and Ammonia. *Aerosol Air Qual. Res.* 7: 193-204. - Koerkamp, P.W.G.G., Metz, J.H.M., Uenk, G.H., Phillips, V.R., Holden, M.R., Sneath, R.W., Short, J.L., White, R.P., Hartung, J., Seedorf, J., Schroder, M., Linkert, K.H., Pedersen, S., Takai, H., Johnsen, J.O. and Wathes, C.M. (1998). Concentrations and Emissions of Ammonia in Livestock Buildings in Northern Europe. *J. Agric. Eng. Res.* 70: 79-95. - Kulshrestha, U.C., Sarkar, A.K., Srivastava, S.S. and Parashar, D.C. (1996). Investigation into Atmospheric Deposition through Precipitation Studies at New Delhi (India). *Atmos. Environ.* 30: 4149-4154. - Larsen, R.K., Steinbacher, J.C. and Baker, J.E. (2001). Ammonia Exchange between the Atmosphere and the Surface Waters at Two Locations in the Chesapeake Bay. *Environ. Sci. Technol.* 35: 4731-4738. - Lee, H.S., Wadden, R.A. and Scheff, P.A. (1993). Measurement and Evaluation of Acid Air Pollutants in Chicago Using an Annular Denuder System. *Atmos. Environ.* 27: 553-554. - Lee, H.S., Kang, C.M., Kang, B.W. and Kim, H.K. (1999). Seasonal Variations of Acidic Air Pollutants in Seoul, South Korea. *Atmos. Environ.* 33: 3143-3152. - Lemmetty M., Vehkamaki, H., Virtanen, A., Kulmala, M. and Keskinen, J. (2007). Homogeneous Ternary H₂SO₄-NH₃-H₂O Nucleation and Siesel Exhaust: a Classical Approach. *Aerosol Air Qual. Res.* 7: 489-499. - Lenhard, V. and Gravenhorst, G. (1980). Evaluation of Ammonia of Fluxes into the Free Atmosphere over Western Germany. *Tellus*. 328: 48-55. - Likens, G.E., Keene, W.C., Miller, J.M. and Galloway, J.N. (1987). Chemistry of Precipitation from a Remote, Terrestrial Site in Australia. *J. Geophys. Res.* 92: 13299-13314. - Lindberg, S.E., Bredemeier, M., Schaefer, D.A. and Qi, L. (1990). Atmospheric Concentrations and Deposition of Nitrogen and Major Ions in Conifer Forests in the United States and Federal Republic of Germany. *Atmos. Environ.* 24: 2207-2220. - Loflund, M., Kasper-Giebl, A., Stopper, S., Urban, H., Bieli, P., Kirchner M., Braeutigam S. and Puxbaum H. (2002). Monitoring Ammonia in Urban, Inner Alpine and Pre-alpine Ambient Air. *J. Environ. Monit.* 4: 205-209. - Matsumoto, M. and Okita, T. (1998). Long Term Measurements of Atmospheric Gaseous and Aerosol Species Using an Annular Denuder System in Nara, Japan. *Atmos. Environ.* 32: 1419-1425. - Nemitz, E., Milford, C. and Sutton, M.A. - (2001). A Two-Layer Canopy Compensation Point Model for Describing Bi-directional Biosphere—Atmosphere Exchange of Ammonia. *Q. J. R. Meteorol. Soc.* 127: 815-833. - Perrino, C., Catrambone, M., DiMenno, A. and Bucchianico, D. (2002). Gaseous Ammonia in the Urban Area of Rome, Italy and its Relationship with Traffic Emissions. *Atmos. Environ.* 36: 5385-5394. - Possanzini, M., Buttini, P. and Dipalo, V. (1988). Characterization of a Rural Area in Terms of Dry and Wet Deposition. *Sci. Total. Environ.* 74: 111-120. - Rabaud, N.E., James, T.A., Ashbaugh, L.L. and Flocchini, R.G. (2001). A Passive Sampler for the Determination of Airborne Ammonia Concentrations near Large-Scale Animal Facilities. *Environ. Sci. Technol.* 35: 1190-1196. - Roadman, M.J., Scudlark, J.R., Meisinger, J.J. and Ullman, W.J. (2003). Validation of Ogawa Passive Samplers for the Determination of Gaseous Ammonia Concentrations in Agricultural Settings. *Atmos. Environ.* 37: 2317-2325. - Singh, S.P., Satsangi, G.S., Khare, P., Lakhani, A., Maharaj Kumari, K. and Srivastava, S.S. (2001). Multiphase Measurement of Atmospheric Ammonia. *Chemosphere-Global Change Sci.* 3: 107-116. - Sutton, M.A., Burkhardt, J.K., Guerin, D., Nemitz, E. and Fowler, D. (1998). Development of Resistance Models to Describe Measurements of Bi-directional Ammonia-surface Exchange. *Atmos. Environ.* 32: 473-480. - Tate, P. (2002). Ammonia Sampling UsingOgawa Passive Samplers. [MS Thesis].University of South Florida, Tampa, FL. - Thöni, L., Seitler, E., Blatter, A. and Neftel, A. (2003). A Passive Sampling Method to Determine Ammonia in Ambient Air. *J. Environ. Monit.* 5: 96-99. - Tuncel, S.G. and Ungor, S. (1996). Rain Water Chemistry in Ankara, Turkey. *Atmos. Environ.* 30: 2721-2727. - Walker, J.T., Whitall, D.R., Robarge, W. and Paerl, H.W. (2004). Ambient Ammonia and Ammonium Aerosol across a Region of Variable Ammonia Emission Density. *Atmos. Environ.* 38: 1235-1246. - Wilson, S.M. and Serre, M.L. (2007). Use of Passive Samplers to Measure Atmospheric - Ammonia Levels in a High-density Industrial Hog Farm Area of Eastern North Carolina. *Atmos. Environ.* 41: 6074-6086. - Yamamoto, N., Kabeya, N., Onodera, M., Takahahi, S., Komori, Y., Nakazuka, E. and Shirai, T. (1988). Seasonal Variation of Atmospheric Ammonia and Particulate Ammonium Concentrations in the Urban Atmosphere of Yokohama over a 5-year Period. *Atmos. Environ.* 22: 2621-2623. - Yao, X.H., Ling, T.Y., Fang, M. and Chan, C.K. (2006). Comparison of Thermodynamic Predictions for in Situ pH in PM_{2.5}. *Atmos. Environ.* 40: 2835-2844. Received for review, October 3, 2008 Accepted, January 17, 2009