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Abstract

This paper compares two approaches to modeling (smoothing) aerosol particle size distribution 
(particle counts for specified diameter intervals): i) the semiparametric approach based on a maximum 
likelihood fitting of lognormal (LN) mixtures at each time separately, followed by smoothing parameter 
tracks, ii) the nonparametric approach based on a kernel-like smoothing as an application of the gnostic 
theory of uncertain data. The specific advantages and disadvantages of both the semiparametric and 
nonparametric approaches are discussed and illustrated using real data containing a day-long time series 
of size spectra measurements.  
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INTRODUCTION various perspectives. There are many potential 
approaches that differ in the level of 
sophistication, computational load, preliminary 
information requirements, or assumptions 
needed to justify them. However, we can think 
of two basic classes into which they can be 
categorized: nonparametric and 
semiparametric models.  

The data describing the dynamics of particle 
size distribution (PSD) are inevitably complex 
and might be modeled statistically from   
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The semiparametric models of our interest 
consist of two parts. The parametric part 
postulates a mathematical formula to describe 
PSD feasibly and uses it, together with the 
measurement error distribution specification, 
to fit the PSD at each measurement time (e. g., 
by maximum likelihood). The time dynamics 
of parameters are then smoothed 
nonparametrically. The model specification 
involves assumptions that always behave as a 
two-edged sword: they can improve efficiency 
if they are approximately correct, but can spoil 
the analysis if they are not plausible. In real 
data fitting, such a model cannot have too many 
parameters and will not follow every little 
detail of the data. Rather, it should be able to 
capture the most important features and skip 
the minor ones, in line with the philosophy 
embodied in the aphorism by George E. P. Box 
(Box and Draper, 1987): “All models are 
wrong. But some of them are useful.” On the 
other hand, nonparametric models try to escape 
the danger of possibly incorrect parametric 
model specifications by making as few 
assumptions as possible. Typically, only very 
basic notions are employed, mainly the 
smoothness of the fitted distribution. The 
resulting solution then makes a compromise 
between the quality of the fit and its 
smoothness. Such an approach is certainly 
appealing since it creates the impression that it 
represents a sort of ideal, fool-proof or 
automatic tool that does not require any 
substantial assumption-making and hence 
precludes preliminary thinking about model 
choice. Unfortunately, nothing is for free and 
the impression is not correct for several reasons. 

Generally, the efficiency is less important (the 
approximately correct parsimonious 
parametric model can estimate things in a more 
efficient and stable way). More influential is 
the fact that the balance between smoothness 
and the goodness-of-fit is not easy to establish. 
A wrong setting of procedural details can easily 
lead to over/underfitting, which is usually not 
substantial for the overall performance of the 
smoother, but can be disastrous for the fit of the 
local details of substantial interest (e. g., local 
maxima size and location). When focusing on 
these details, special techniques and/or a lot of 
fine tuning might be required (Marron and 
Chaudhuri, 1998) that are not easy to 
implement for large spectral time series data, or 
a lot of personal experience with similar data is 
required (as well as some subjective judgment). 

In this work we discuss the semi- and 
nonparametric model properties and illustrate 
their capabilities on the data from a real 
measurement campaign. As a representative of 
the semiparametric methodology we used a 
lognormal (LN) mixture for the description of 
the PSD, followed by a loess nonparametric 
smoother (to smooth the parameter dynamics). 
LN mixtures were selected because mixtures 
with few lognormal components (1, 2 or 3) 
have traditionally been used in aerosol research 
both for theoretical computations (Seinfeld and 
Pandis, 1998) and for practical data analysis 
(Makela et al., 2000; Voutilainen and Kaipio, 
2002). We chose a flexible gnostic smoother as 
a representative of purely nonparametric 
methods. It was used as an example of a 
technique that is similar to traditional kernel 
smoothing methods, but enjoys robustness and 
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interesting motivation built on first principles 
(Kovanic, 1986). Its scale parameter, which 
defines the bandwidth, is estimated in such a 
way that the entropy of the original data is 
equal to the entropy of the calculated 
distribution function. The smoothness of the 
gnostic distribution function is thus determined 
by the data adopting the rule “let the data speak 
for themselves.” 

In this text, we will try to compare both 
approaches to show their weak and strong 
points. We will stress namely those features 
that the potential user should be aware of.

MATERIAL AND MEASUREMENT 
METHODS 

We analyzed data obtained from one day of a 

measurement campaign that took place at the 

Finokalia Station on the island of Crete, Greece 

as a part of the EC-funded 5th FP project called 

SUB-AERO (Lazaridis et al., 2006). The 

chosen subset of data was obtained using a 

Scanning Mobility Particle Sizer (SMPS, 

Model 3934, TSI Inc., USA). This aerosol 

spectrometer consists of two major parts. In the 

Electrostatic Classifier (Model EC 3071A), 

one narrow fraction of particles having the 

same electrical mobility is selected. This 

fraction then enters the Condensation Particle 

Counter (CPC 3022A) where particles grow by 

the condensation of n-butanol on their surface 

and are counted optically. The field strength in 

the EC changes continuously in order to scan 

the whole available mobility range. After the 

scan is completed, a sophisticated program 

provides the aerosol number size distribution in 

the sample. In this experiment, each scan lasted 

for 90 seconds and was followed immediately 

by another scan. The data matrix has 953T

spectra, measured on January 12, 2001 in 

equidistant time intervals (1.5 minutes apart) 

from 00:00:10 to 23:59:59. Each scan went 

through 103 mobility/size channels. At the -th 

time we got a measurement of the cumulative 

particle count ( ), meaning the count of 

particles with a diameter smaller than or equal 

to the i -th size limit,  (i.e., the count in the 

interval 

t

itN

id

0

0 3nmd

, id d ) , where 1 2i

7 2  and the boundaries increased 

exponentially, 1i id d  with 1 0367 ,

103I . Consequently, the measured diameter 

range spanned the interval 7 23 294 2  nm.  

SEMIPARAMETRIC 
MODEL—LOGNORMAL 
MIXTURES

The PSD is modeled parametrically (as an 
LN mixture), separately at each measurement 
time. The mixture parameters are estimated via 
maximum likelihood. These rough estimates of 
the time tracks are then smoothed 
nonparametrically to obtain a clearer picture of 
trends and more or less local systematic 
changes in their values.

Model
The parametric model of the size distribution 

at time 1t t  can be formulated as: 
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The modeled quantity ( ) is the 

cumulative count of particles with a diameter 

smaller than or equal to the i -th size limit 

, as provided by the measurement 

device (see Section 2 for details). The 

systematic part is then composed of an 

appropriately scaled sum of the lognormal 

cumulative distribution function (cdf) 

differences.  denotes the standard normal 

cdf. We use lo  for the natural ( -base) 

logarithm. The parametrization is such that the 

parameter 

itN

1 2id i

( )

g( ) e

A  corresponds to the total particle 

number concentration in the scanned interval 

0 Id d , and the sum gives the (normalized) 

size distribution within this interval. Each of 

the  terms in the sum corresponds to the 

contribution from the k -th truncated 

lognormal component of the mixture. This 

component has the weight 

K

tkp  (with obvious 

restrictions  and ) and the 

parameters 

1tkk
p

tk

0 1tkp

, tk , which describe the shape 

of the component. To assure identifiability, we 

assume (without loss of generality) that the 

components  are ordered according 

to the 

1k

-parameters in ascending order (so that 

1tk t k ). This mixture represents a 

systematic part of the model. 

Further, there is a multiplicative error, it

capturing not only the measurement error, but 

also local irregularities (e. g., wind gusts 

bringing air masses of unusual composition) 

and the lack of the lognormal mixture model fit. 

It is assumed to be lognormally distributed, i.e. 
2(0 )it tLN

i

, independently across the t ’s 

and ’s. One can explain this behavior, for 

example, by considering the fact that the error 

distribution should be skewed and have a 

positive support. In practical terms, it is helpful 

that the model (1) changes to the 

easy-to-handle homoscedastic case when the 

logarithm of both sides is taken [as an 

application of the TBS methodology, Carroll 

and Ruppert (1988)].

For a fixed K , the model parameters (that 

need to be estimated from the data to identify 

the model completely) are: ,t tA tkpk , tk ,

1 ,k

K

. According to suggestions from 

aerosol theory and previous practical work 

(Seinfeld and Pandis,1998; Makela et al., 2000; 

Voutilainen and Kaipio, 2002), we fitted the 

lognormal mixtures with one, two, or three 

components ( 1 2 3 ), which we will denote 

by LN1, LN2, LN3, respectively. If the size 

spectra behave “reasonably”, each of the 

parameters should be a smooth function of time, 

so that for the observed times t ,

it represents a time series. The “only” problem 

is that these series are not directly observable 

and need to be estimated. Estimations were 

done in two steps: i) by obtaining the rough 

time-by-time parameter estimates, via 

maximum likelihood, using the parametric 

1 , 953
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Estimation model (1) and the implied likelihood function, 

and: ii) by smoothing the parameter time-tracks 

via a flexible nonparametric smoother loess

(Cleveland and Devlin, 1988). The two steps 

represent a semi-parametric approach (the size 

distribution is modeled parametrically, the time 

dynamics nonparametrically), in an attempt to 

combine the useful properties of both. The 

basic idea is that the available knowledge about 

the distributional shape should be used to 

improve the efficiency and restrict the 

distributional shape range to exclude wild 

shapes that might be otherwise suggested by 

the count distortion introduced; e. g., by the 

measurement error. On the other hand, very 

little is known about the time-dynamics of the 

spectra a priori, so that the time evolution 

should be specified as flexibly as possible.

Model (1) can be fitted relatively easily via 
maximum likelihood for each time t  and a 
fixed . From a practical point of view, all that 
is required is the numerical maximization of 
the logarithm of the likelihood. We used 
quasi-Newton-Raphson here. Log likelihood 
behaves in a relatively decent way, as long 
as  is not large (which was our case with 

K

K
1 K 3  choices). For numerical and 
substantive reasons, we reparametrized the 
component proportions tkp ’s via a cumulative 
logit transformation (Agresti, 1990), so that 
obvious tkp s properties were automatically 
enforced.

Convergence was generally good when we 

used the following scheme to construct the 

(time-dependent) starting values. For LN1 we 

started from the observed count in 0 Id d  for 

the initial A  estimate, with the average and 

standard deviation of logarithms of the class 

interval centers (weighted by the 

time-averaged particle count observed in the 

particular class) for  and . For LN2, we 

started from the LN1 results and added an 

additional component, whose location was 

suggested by the analysis of the residuals after 

the LN model. For LN3, we started from the 

LN2.

Let us consider one of the tasks typical for 
aerosol spectra analysis, namely the search for 
the number and location of distributional 
modes. In the LN mixture model, the number 
of peaks arises as a consequence of the 
parameter configuration. It is important to note 
that it is always less than or equal to the 
number of LN components. This is because 
some components can be wide enough and 
located closely enough so that they blend 
together into one peak. In this sense, the 
parametric model is much more informative 
than the plain smoothing of observed counts. It 
can discover components drifting apart before 
they are distant enough to be visible on the 
surface.

For a given , we estimated the parameter 
tracks (i.e., smoothed them) by the robust 
variant of the loess smoother (Cleveland and 
Devlin, 1988). As it is quadratic only locally, 
its shape is allowed to change with time, so that 
the resulting track estimate is generally highly 

K
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Although one might see the time-varying 
as a realistic feature, the time-dynamics 
smoothing becomes much more complicated 
with the parameter space dimension changes. 
Even though there are elegant Bayesian 
approaches to this (Green, 1995), they tend to 
be quite complicated and computationally 
demanding even in much simpler set-ups than 
we encounter here. Therefore, we employed 
two simpler approaches. The first was to use 
the results of the largest model considered 
(LN3) and to smooth its parameters in a 
straightforward way. Admittedly, this might 
lead to occasional overfitting (when a less 
parsimonious model would be chosen by the 
selection procedure) and hence, a somewhat 
inefficient parameter estimation. Nevertheless, 
the extent of the problems should not be 
typically too large for two reasons: the 
parameter values are smoothed anyway, so that 
occasional excesses related to unstable 
estimation should be suppressed (as long as the 
LN3 model is approximately valid most of the 
time), and one is often not interested directly in 
the parameters but in their functions (like 
location and/or size of the peaks of the size 
spectra) which are much more stable than the 
parameters themselves.  

tKnonlinear. The smooth fit represents a 
compromise between a perfect (but rough and 
inefficient) fit and smoothness. The “exchange 
rate” in this compromise is given by the span 
parameter. The span gives a proportion of the 
data that are used locally to estimate the value 
at a particular time (a larger span means more 
smoothness). We chose a span from 0.1-0.25 
(after some experimentation and inspection of 
the quality and smoothness of the fit). The 
tracks were smoothed for each parameter 
separately. To get the ˆ tA  estimate, we 
smoothed the logs of the original time-specific 
MLEs and exponentiated the results. The s
were obtained via renormalization of the 
smoothed estimates (so that they add to one, as 
they should). The other parameters were 
smoothed directly.  

ˆ tkp

In the previous text, we proceeded as if K
was known. Obviously, in practice K  is not 
known and must be selected somehow. Since 
we restricted the values of K to 1 3  and 
hence fitted lognormal mixtures with one, two 
and three components, we had to select one of 
them. To this end, we used a (crude) procedure 
mimicking the likelihood ratio test at the level 
of 0.10 [to alleviate the possible problems with 
the parameter space boundary (McCulloch and 
Searle, 2001)]. The decision scheme was as 
follows: i) if the test of LN2 vs. LN1 was not 
significant, we selected LN1, ii) if the test in i) 
was significant, we conducted a test of LN3 vs. 
LN2 and selected LN3 or LN2 when it was/was 
not significant, respectively. Clearly, such a 
procedure generally leads to a time-varying 
number of lognormal component’s estimates 
( ).

K

tK

When the interest is predominantly in peak 
location dynamics, our second approach can be 
utilized—that is time-by-time testing can be 
applied to select (time-varying) the 
dimensionality estimate , then peak 
locations can be smoothed instead of 
parameters.  

tK

All the computations were done in S-plus 
(Venables and Ripley, 1994). For the 
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Results of the Semiparametric Model minimization of the negative log likelihood, we 
used the built-in function nlminb. A two-stage 
estimation (estimating the LN parameters 
time-by-time and then smoothing the estimates 
by a nonparametric smoother like loess) is just 
one way to get to the resulting estimates. It is 
certainly not the most efficient way, but it 
offers a relatively easily usable tool for 
processing masses of data. It is potentially 
more efficient to build time smoothing into the 
model explicitly; e. g., by postulating a time 
series model in parameters [e. g., in 
multivariate ARIMA style, or even more 
elegantly in a state-space framework, 
(Voutilainen and Kaipio, 2001)]. This is 
appealing from both the theoretical and the 
statistical point of view, but the approach 
certainly presents two obstacles: i) the 
computational complexity, ii) the need for a 
reasonable dynamic statistical model 
specification. We did not go to the 
development of the time series model (which 
would be rather specific for the Crete 
space-time location), because of not having 
enough aerosol-dynamics-related information 
on hand to be able to build such a model, and 
wanting to demonstrate mainly the difference 
between the totally nonparametric (section 4) 
and the more specific semiparametric modeling 
approaches, while simultaneously staying 
relatively general (so that the finding can be 
applied mode widely). One possible 
consequence might be that we lost some 
efficiency that the more-specific model could 
probably have gained. Nevertheless, we do not 
expect that the time series specification would 
increase the efficiency dramatically. 

When processing the real data, we replaced 
the occasional zero observed counts in the first 
several intervals by small numbers (by halves 
of the minimum nonzero count observed in that 
particular interval during the observed period). 
Since the spectrum for the first observed time 
( 1t ) was rather aberrant, we excluded it from 
further analyses (and proceeded with a 
relabeled time index, running 
from 1 ,( 1)t ). Fig. 1 compares the 
results of the LME fit of LN1, LN2 and LN3 to 
the size spectrum obtained on January 12, 2001 
at 00:42:09. The open circles correspond to 

( )
o g ( )

d
d

N

l
td N

d  estimated internally by the 

measurement device at the size interval 
midpoints (by taking the derivatives of s
smoothed internally by the measurement 
device); i.e., to the quantities that we did not
use for fitting. We used a raw (empirical) 
cumulative count  instead to avoid the 
arbitrary pre-smoothing step and the arbitrary 
placement to the interval midpoint where only 
the total interval count is available. As a 
consequence, the open circles and lines are 
only approximately comparable.  

itN

t

The plot illustrates how the fit improves as 
we go from LN1 (which is forced to have one 
peak only, so that it tries to do its best by fitting 
the main peak and then seriously distorting the 
lower and upper end of the distribution), to 
LN2 (which still misses the lower peak even 
though it can theoretically fit two 
peaks—because both available components are 
spent to describe the complicated main peak 
shape) and LN3 (which picks both peaks fairly 
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well, while smoothing the peak densities a little 
bit due to the inherent measurement variability). 
Note also that the fitted lines correspond to 
median responses and not to their expected 
values (the two are quite different quantities 
under the lognormal distribution of it ’s in 1).

Fig. 2 illustrates the dynamics of the fitted 

total particle number concentrations ( Â s) in 

the monitored diameter interval 0d dI ,

estimated from the LN3 model.  is measured 

in hours (0-24) and corresponds to the actual 

measurement time. Fig. 2(a) shows the 

situation after smoothing implied by the 

nonparametric part of the model, while 2(b) 

shows results of time-by-time LN3 estimation 

without any smoothing of parameters along the 

time line.  

Fig. 1. The fits of a particle size distribution 
obtained on January 12, 2001 at 00:42:09 by 
the semiparametric model with one, two and 
three LN components (lines), compared with 
the data (points).

Fig 3. LN3, the smoothed time tracks of the 

1 2 3ˆ? estimates.

Fig. 3 compares the smoothed estimates of 

the 1 2 3k k  parameters. Notice that the 

smoothed estimates respect the 1? k k

restriction (as they should). 1ˆ  tends to 

remain low and pretty stable over time. There 

are much more dynamics in 2 3

ˆ k

 behavior. 

All three components show a quite abrupt 

change of the behavior close to 11 a.m. Even 

this observation alone might offer interesting 

insights into the aerosol size distribution 

evolution. Notice however, that s

Fig. 2. The time track of the total particle 
number concentration Â  estimated using the 
LN3 model. Dots represent the measured 
points in both cases; the curve represents the 
LN3 model fit: a) after smoothing, and b) 
before smoothing with the loess smoother. 
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obviously do not represent estimates of the 

spectrum peak locations on the log scale. In 

fact, there can easily be a smaller number of 

peaks than 3 even if the fitted LN3 is 

non-trivial. This is because the peak locations 

depend in a complicated way on relative 

location of ˆ k

k,

2ˆ

s as well as on other parameters. 

We will discuss peak locations later.  

From  comparison, we can see that in 

terms of particle count it is representative, the 

first component is rather “small.” Nevertheless, 

its behavior might be of utmost interest (e.g., in 

connection with the nucleation mode 

development). The (almost) inverse relation 

between

p̂

p  and 3p̂  is obviously given by 

the sum-to-one restriction (and the fact that the 

1p̂  is small).  
The other possible smoothing strategy 

mentioned in the section Estimation is to fit 
LN1, LN2, LN3 and to decide for one of them 
by an LRT-like testing, compute local maxima 
for the selected mixture and finally smooth the 
local maxima. One would expect that this 
approach should lead to more parsimonious 
time-dependent K . The potential gains in 
efficiency (achieved by sparing a few 
parameters) might be offset by: i) the random 
nature of the selection procedure (the test 
necessarily commits both type I and type II 
errors), ii) occasional jumps in maxima 
locations before smoothing (induced by 
dimensionality ( K ) changes), and hence it is 
not entirely clear whether it really pays off to 
go with the more difficult-to-handle model. 
The percentages of times when LN1, LN2 or 

LN3 was selected by the test-based procedure 
were 6.4 %, 18.9% and 74.7 %, respectively. In 
other words, the LN3 prevails (so that the 
previous approach with always fitting LN3 
should not be too bad); but the percentage of 
the simpler mixtures is not totally 
negligible—providing some motivation for 
time-varying K attempts. Not only that the 
improvement provided by going from LN2- 
LN3 is not always the same, but also that it is 
distributed unevenly along the time axis. 
Greatest improvements occur around 11 and 15 
hours.

Fig. 4. The locations of non-smoothed local 
maxima on particle distribution functions and 
their evolution in time (as determined by the 
semiparametric model). 

When we take all the smoothed parameters 
together, we can easily use them to derive other 
quantities of practical interest. The position of 
local maximum might be one of them. Many 
others can be computed just as easily; for 
example, local maxima sizes. But even subtler 
ones, like the locations of maxima of the first 
derivative of the spectral density, can be 
computed as well. When we selected one of the 
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fitted models by the testing procedure 
described earlier and found the local peaks 
(numerically), we plotted their rough 
(not-smoothed) peak locations in Fig. 4. 
Specifically, the number of peaks is not forced 
to be 3 (in fact, it varies between 1, 2 and 3). 
    Resulting local maxima of the regression 
function are plotted separately for each time. 
The proportions of the times when one, two or 
three peaks were found in the fitted are 18.9%, 
43.1%, 37.9%, respectively. Note also that 
even this relatively easy procedure clearly 
visualized modal changes occurring in the late 
morning (around 11 a. m.). These changes are 
connected to a complicated transitional 
phenomenon, so called “particle formation 
event” (see also section Results of the 
Nonparametric Model), which is sometimes 
observed in atmospheric aerosol sampling 
campaigns. It is not the aim of this paper to deal 
with its mechanism in detail. However, a 
widely accepted explanation says that there are 
some thermodynamically stable clusters (TSC) 
present in the atmosphere. As the size of these 
clusters is under the lower detection limits of 
most aerosol spectrometers, they are 
practically “invisible.” Under favorable 
conditions, e. g. when a sufficient amount of 
condensable vapors is available in the 
atmosphere, these vapors condense on the 
cluster's surface causing its growth. When the 
cluster becomes visible for the spectrometer, it 
is detected. On the measured spectra, it looks 
like a new mode coming from the lowest sizes 
and increasing with time. Various parameters 
may then be extracted from its time behavior; 
e. g., the growth rate, production rate of the 

condensable vapor, and so on (Kulmala et al.,
2004).

NONPARAMETRIC MODEL 

The PSD is modeled by means of tools taken 
from the gnostic theory of uncertain data 
developed by Kovanic (1986). Over the years 
of development, the gnostic theory has grown 
into a set of tools, each of which finds its 
application in some branch of data analysis. 
The tools differ in the kind of robustness. Tools 
taking advantage of the quantifying 
distribution function possess the robustness 
with respect to inliers (outer robustness) and 
are useful for signal processing and similar 
applications.  

The opposite case; i.e., the robustness with 
respect to outliers (inner robustness) is a 
feature of the tools based upon estimating 
distribution functions. Two kinds of estimating 
distribution functions are available, a global 
and a local one. 

The global estimating distribution function 
is by definition unimodal. It can be used to 
verify the homogeneity of a data sample or to 
describe properties of such a sample. However, 
the PSD of atmospheric aerosols is usually 
multimodal, the global estimating distribution 
function thus cannot be used. The local 
estimating distribution function is a kernel 
estimate and can therefore describe multimodal 
distributions. In the following text, we will use 
the local estimating distribution function only. 
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Summary of the gnostic theory of uncertain 
data

In this section we summarize the most 
important features of the gnostic theory of 
uncertain data. We limit explanation to the 
local estimating distribution function. This 
work extends the methodology of using the 
local estimating distribution function so that 
the optimal bounds of a finite data support can 
be estimated. This will be explained in the 
section Data Support

The modeled quantity is the number of 
particles of the particular size class. We will 
model both variations of the particle number in 
the time domain, as well as the PSD at a 
specific time. The equations will therefore be 
given in an abstract way and both types of 
usage will be explained later.  

The first axiom of the gnostic theory states 
that the measured value  can be expressed as 
a sum of an ideal value , which is the 
mathematical model of the true value, and 
uncertainty, which is a product of a scale 
parameter  and normalized uncertainty 

a

0a

S :

0a a S                                                (2) 

Using transformations 

0 0exp( ) exp( )z a z a             (3) 

a multiplicative model is obtained: 

1 1
0 exp( )S Sz z                         (4) 

Since conversion between the additive and 
the multiplicative model is straightforward, all 

the following equations will be written for the 
multiplicative model only.  

The basic properties are defined for each 
individual observation and the equations have 
been derived by Kovanic (1986) from the 
above-mentioned axiom. Having the 
observation z , we can calculate the probability 
of an ideal value being less or equal to :0z

0
1( )

2
hp z                                    (5) 

where h  is irrelevance defined as

2 2

2 2

1
1

q qh
q q

                                    (6) 

and
1

0

S
zq
z

                        (7) 

After substituting z  and  into Eq.  (5) and 
differentiating, we get the density

0z

22 2

0 0 0

4
log

S S
dp z z

d z S z z
                 (8) 

It can be proven that Eq.  (8) satisfies all 
conditions required for Parzen’s kernels 
(Parzen, 1962). The shape of the kernel is 
determined by the value of the scale parameter. 
If , the kernel converges to a 0S

-function. Entropy can be calculated both for 
the data sample ,  and the 
smoothed kernel estimate. We will select such 
value of  which yields equal entropy in both 
cases. The value of the scale parameter is thus 

kz 1k

S
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obtained by solving the following equation: 

1

1

sin( 2)
2

K
k kk

K
kk

W fS
S W

            (9) 

where  are apriori weights and kW kf  are 
gnostic weights defined by equation 

2

2
1

f
q q2

2

             (10) 

 evaluated using  for each particular 
. It can be shown that there always exists 

a unique solution 0 . The exact 
meaning of the apriori weights  as well as 
the  values, depends on the application of 
the equation and will be explained later.  

1S

kz z

kz

S

kW

Data support 
In practical modeling, the domain of the 

distribution functions is often taken to be the 
set of all real numbers 1R  or the set of positive 
real numbers R . However, these sets 
represent mathematical abstractions. The 
physical quantities do not reach infinite values 
and are often bounded. In some cases the 
bounds are known in advance. In other cases 
we only know that the bounds exist, but their 
values are unknown. This is the case of PSD. 
The smallest particles must be considerably 
larger than molecules. Very large particles 
cannot survive in aerosol because of fast 
sedimentation. The actual bounds usually 
depend on a great many unknown factors. We 
thus intend to obtain such values of bounds 
which best describe the data.  

The equations above are, however, derived 

for variables whose domains are 1R  or R ,

respectively. We will apply the following 

transformation:  

1
L

U

z Zz
z Z

                                         (11) 

where Lz R Z z ZU                      (12) 
and L UZ Z  are the lower and upper bounds of 
the finite data support, respectively.

Procedure
The particle numbers in each size class are 

determined from the raw cumulative count 
reported by the measuring device. These values 
may be influenced by gross measurement 
errors, which may cause problems when 
estimating the scale parameter. Other 
quantities determined from the distribution 
function, such as the positions of local extrema 
and concentration of particles in a particular 
size range would be incorrect. The scale 
parameter is not directly connected to any 
physical quantity. Its smoothness could be 
expected but not justified by any natural law. 
Construction of the gnostic distribution 
function requires not only the value of the scale 
parameter, but also the original raw counts. A 
filtration technique applied to the scale 
parameter will therefore not solve the problem 
either. On the contrary, the raw cumulative 
counts represent the direct physical 
measurement. If there is no nearby source of 
particles, the concentration changes smoothly 
with time, and rapidly occurring variations are 
caused by various kinds of measurement errors. 
The cumulative counts are therefore first 
filtered in the time domain.  
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One of the simplest smoothers is the 
application of an average in a moving window. 
We use a similar gnostic smoother. The 
modeled variable is the particle number of a 
particular size class. Since the particle number 
is allowed to be zero, we make use of the 
additive model, Eq. (2) and transform it using 
Eq. (11) into the multiplicative model, Eq. (4). 
The moving window is formed by five 
consecutive values. These values are used in 
Eqs. (10) and (9) in order to calculate the scale 
parameter. Quantity  in Eq. (7) is the particle 
number at the end of the moving window 
transformed to the multiplicative data support. 
All weights  in Eq. (9) are set to 1. The scale 
parameter enables us to construct a gnostic 
distribution function of particle numbers and 
the quantile for probability equal to 0

0z

iW

5
(gnostic median) is used as a filtered value. 
This procedure automatically removes outliers. 
They could be marked as such by further 
analysis of the differences between the original 
counts and the filtered values, but it was not 
done because such information is not important 
for the determination of a distribution function.  

The PSD function is then determined at each 
time  using the filtered values. The 
determination of the distribution function 
consists in an estimation of the scale parameter 
and the bounds of the data support. The 
agreement of the gnostic estimation local 
distribution function with the empirical 
distribution function is not a good criterion. If 
the scale parameter is changed and the 
distribution function possesses different 
number of modes, the differences between the 
calculated and empirical distribution functions 

change only slightly. Changes of much-greater 
magnitude can be found by comparing the 
calculated and empirical distribution densities. 
We therefore decided to find the optimum 
parameters by minimizing the maximum 
difference between the calculated and 
empirical distribution density.  

t

The filtered values  represent the particle 
numbers of size class  at time t .
The weighted empirical distribution function is 
constructed as

ktN

kd k 1

1

11
( )

i
ktk

it K
kt t Ktk

N
p

N N N 2
                      (13) 

Such definition allows for probability 
, as well as .( )Kp d d 0 01( )p d d

The empirical density is obtained by 
numerical differentiation. A polynomial of the 
third order fitted to seven neighboring points is 
used in order to suppress the oscillations 
caused by uncertainties in the experimental 
data.

The bounds of the data support and the scale 
parameter are obtained by minimizing  

max
logd

dpL
d d

                      (14) 

where ( logdp d d )  is the absolute value of 
the difference between the weighted empirical 
density and the density evaluated from the local 
estimating distribution function. For each 
approximation of the bounds LZ  and UZ , the 
particle sizes  are transformed to the infinite 
data support using Eq. (11). The scale 

kd
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parameter is calculated from Eq. (9). The 
filtered particle numbers  are used in place 
of the apriori weights  and the gnostic 
weights

ktN

kW

kf  are evaluated from the particle 
sizes transformed into the infinite data support. 
Variable  required in Eq. (10) is the 
weighted median, the definition of which is 
given in the following paragraph.

0z

iLet p ,  be the probabilities 
defined by the weighted empirical distribution 
function, Eq. (13). Let  be a given value such 
that

1i

N

P
1p P p . Then let rp  be the greatest 

value satisfying rp P  and sp  be the least 
value satisfying sP . The quantile for 
probability  is defined as a value obtained by 
inverse linear interpolation using 

p
P

rp  and sp .
The weighted median is defined as the 
weighted quantile for .0 5P

The definition does not allow for an 
evaluation of the weighted quantiles for 1P p
and . We must be able to calculate 
weighted quantiles before the bounds of the 
data support are determined. Extrapolation 
below and above the experimental data is 
therefore impossible.

NpP

Before the weighted median can be used in 
Eq. (10), it must be converted into the infinite 
data support by means of Eq. (11).  

The objective function, Eq. (14) may 
possess several local minima. In order to 
determine the global minimum, the generalized 
random search with alternating heuristics 
(GCRS/ALTH) developed by Tvrdík et al. is 
used (Krivý and Tvrdík, 1995; Tvrdík and 
Krivý, 1999; Tvrdík et al., 2001). The MatLab 
implementation of the algorithm is available 
from the author’s website (Tvrdík) and the 

function can also be used with 
Octave (Octave). 

For mostly numerical reasons Eq. (11) is not 
used directly. We first normalize the values of 
particle diameters: 

log( )exp 2 1
log( )

min

max min

d dz
d d

         (15) 

where  and  are the minimum, and 

maximum values of the particle diameter d

and

mind maxd

z  is the normalized multiplicative value 

such that 1 e z e

6 1 1

. We now find optimum 

values of the bounds in the normalized data 

support. The GCRS/ALTH algorithm requires 

limits of the box type. The limits, such as 

10 LZ e

Ld

 and , are wide 

enough so that the optimum value is not missed. 

Bounds  and  are then evaluated from 

Eq. (15).

1 1 610Ue Z

Ud

The LZ - UZ  space extends over 12 orders of 
magnitude and is asymmetric. Its metrics 
prefers LZ  close to data and UZ  distant from 
data. We therefore perform minimization for 
transformed values:  

1 16

1 1 6 6 1 1

log( )log( 10 )2 1 2
log( 10 ) log(10 )

UL
L U

Z eZX X
e e

1

 (16) 

Results of the Nonparametric Model 
The gnostic filter applied to the time series 

of particle counts is very simple. We prefer a 
fast response to the quality of filtration. The 
main purpose is removal of measurements that 
are evidently wrong and replacing them by a 
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smoothed value. Filter performance is 
presented in Fig. 5. You can see that the line 
corresponding to the filtered values slightly 
reduces the scatter of the experimental data 
while following the main trend of the time 
series. Two outliers were removed.  

Fig. 5. Example: the time series of the 
concentration of particles in the size bin 109.4 
nm; the measured values (points) and a 
smoothed line estimated by the gnostic filter. 

Fig. 6. A fit of a particle size distribution 
obtained on January 12, 2001 at 00:42:09 by 
the nonparametric model (line), compared with 
the time-filtered data (points). 

In this work we used only a distribution 
function with a constant scale parameter where 

 needed in Eq. (10) is obtained as a weighted 
median converted to the infinite data support. 
The typical distribution is depicted in Fig. 6. It 
can be seen that small peaks were smoothed 
out.

0z

Fig. 7. The distribution density function (curve) 
determined by the gnostic method. 
Experimental data are denoted by points. The 
sample contains a relatively high concentration 
of small particles. 

The character of the distribution is changed 
in the period from 11 h to 16 h during a particle 
formation event that has already been 
discussed in the section Results of the 
Semiparametric Model. The concentration of 
small particles is increased, and they often 
form two separate local maxima. Such a 
distribution is depicted in Fig. 7. 

COMPARISON 

Parametric modeling offers an excellent tool 
if the model is in agreement with the real data. 
If the model is based upon theoretical 
assumptions, the parameters estimated from 
the data provide a useful insight, which can 
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help in understanding phenomena occurring in 
the atmosphere. The method, however, fails if 
the data depart considerably from the model.  

The gnostic approach presents a 
nonparametric method. The value of the scale 
parameter does not depend on the analyst, it is 
determined from the condition of entropy 
equality and thus the risk of under- or 
over-smoothing is relatively low. The use of 
the finite data support improves agreement 
between the empirical and gnostic distribution 
functions at the edges of the size interval. The 
number of local maxima is then obtained from 
an analysis of the distribution function.

The comparison of the original data and its 
fit by a semiparametric and a nonparametric 
method are shown in Figs. 1 and 6. The 
semiparametric method is represented by 3 
curves, corresponding to the LN1, LN2 and 
LN3 models. It can be seen that in this case 
both LN3 and the nonparametric model 
describe the measured data reasonably well, 
recovering both the main peak at 60 nm and 
also the small one below 10 nm.  

Figs. 4 and 8 then show how the two 
approaches succeeded in capturing the 
positions of local maxima on the particle 
distributions’ densities as they move in time 
during the analyzed day. Again, both methods 
behaved similarly. It seems, however, that the 
nonparametric approach yielded a more robust 
result (the positions of local maxima do not 
change that much with time). The reason is 
obvious: the nonparametric method performed 
data filtration in the time domain at first, and it 
removed a lot of noise from the data. Both 
approaches revealed the particle formation 

event starting around 11 a.m., both followed 
the growth of these particles until the evening 
when the concentration maxima connected to 
these particles disappeared. However, as this 
new maximum was superimposed on a 
distribution that already had 3 other maxima, 
the LN3 model naturally failed to describe the 
fourth one.

Fig. 8. The locations of local maxima on 
particle distribution functions and their 
evolution in time (as determined by the 
nonparametric model). 

Fig. 9. The concentration of particles with a 
size below 30nm and the total concentration of 
particles.
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Fig. 9 reveals that within the mentioned time 
period the aerosol is formed mostly by the 
newly appearing small particles with sizes 
below 30 nm. Since this local maximum 
dominates the distributions, the maxima at 
other sizes are sometimes changed into 
shoulders on another peak. This causes short 
gaps in Fig. 8. 

Another important difference is found when 
calculating the concentration of particles. Let’s 
assume that there are two sources, each of 
which produces particles with lognormal size 
distributions. Parametric approach gives us the 
concentrations for each source of particles. 
Such information is not available if the 
nonparametric approach is used. It is only 
possible to find a local minimum between the 
two modes and evaluate the concentrations of 
the particles with sizes lower and greater than 
the size at the minimum.  

A related issue is that of information 
compression. The parametric model with a few 
LN components compresses the empirical 
information into a compact form—parameter 
estimates. Consider for instance the 
“compression ratio”—that is the reciprocal of 
the ratio between the number of datapoints in 
the empirical spectra (number of channels) and 
the number of parameters in the LN mixture 
that is used to fit them. For our data, it is 

 for LN3 and it is obviously 
even better for simpler mixtures. The 
nonparametric methodology can offer 
compression if we are interested only in the 
number and positions of modes. If we later 
need some other type of information, we either 
have to repeat the calculation, or the calculated 

parameters must be stored in addition to the 
measured data. This is the price paid for higher 
flexibility in nonparametric estimates.  

9 103 0 0874

CONCLUSIONS

This paper presents two methods of 
modeling atmospheric PSDs: the parametric 
approach and the nonparametric. Our general 
view is that in this comparison there is no 
absolute winner; both approaches have their 
merits. However, in order to give our kind 
reader some hints, we will try to summarize 
pros and cons of both approaches. 

The semiparametric method based on 
lognormal mixtures has these advantages: a) it 
is more efficient and less computationally 
demanding; b) it gives excellent results if the 
model agrees with the data; c) it provides a 
high data compression ratio; d) it gives 
concentration of aerosol particles 
corresponding to each of the modes; and f) it is 
more easily programmable since its lognormal 
components are available as built-in functions 
in most statistical packages. 

The drawbacks of the semiparametric 
method are: a) if the data depart considerably 
from model assumptions, the method fails to 
arrive at correct and physically sound results, 
but this fact may not be recognized from the 
results itself; b) the method becomes more 
complicated when the number of LN 
distributions in the mixture (K) changes with 
time; and c) it does not follow fast changes in 
the PSDs well even if number K is kept 
constant (but that depends more on the 
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