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Abstract

An analytical study is presented for describing a flame in a shear layer flow formed between a 
gaseous fuel stream and an oxidizer stream, moving at different velocities. The diffusion flame-
sheet approximation is addressed. It is shown how the shear layer flow-field driven by various 
ratios of free- flows velocities influences flame properties. The role of the “equivalence ratio for 
diffusion flames”, that is, the product of stoichiometric ratio and the concentration ratio of 
fuel/oxidizer at the outer flows, is analyzed, in terms of flame shape and location. Flame shapes 
regimes are described in terms of equivalence ratio and velocity ratio. A “turning point” is 
revealed in the shift of the flame location from one stream towards the other with increasing 
Schmidt number. The value of the corresponding “turning point” equivalence ratio, in which the 
flame shift changes direction, is found to be governed by the velocity profile and specifically by 
the free stream velocity ratio. Moreover, this ratio is shown to control also the sensitivity of the 
flame location to changes in the value of the Schmidt number. Downstream velocity deceleration 
is also addressed, with respect to flame location and flame shape, showing a shift of the flame 
towards the fuel stream and a change in flame curvature.  This study of the location and shape of 
such a flame configuration elucidates the ways these flame characteristics may be manipulated. It 
also points out the general region of the main production of air-pollutants in related combustion 
cases which exist in industry and in the outdoor-atmosphere where fire is occurring between two 
flows of different chemical species moving at different velocities.
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INTRODUCTION

When a shear layer is formed between two streams, one, a gaseous fuel stream and the other an 
oxidizer, a diffusion flame may occur under the appropriate conditions. A similar statement was 
made by Burke and Schumann in their 1928 work that analyzes a diffusion flame in the case of 
two concentric streams flowing at the same constant velocity. It is a well known fact that the 
pollutants emissions from a fire reach their maximum levels in the area where the temperature is 
maximum, or in other words, where the main reaction takes place, and hence the study of both the 
location and the shape of the flame and the parameters which influence them will help to predict 
the area of high pollutants concentrations.  Hence, the aim here is to mathematically analyze the 
behavior of the location of the flame and its shape, in response to: 1) Changes in free stream 
velocity ratio; 2) Downstream velocity deceleration; 3) Fuel to oxidizer various ratios; and 4) 
Fuel and oxidizer Lewis numbers. The analysis presented here is entirely mathematical besides 
some auxiliary numerical calculations. 

A flame in a shear layer occurs in various situations in industry and in the outdoor-atmosphere. 
In terms of research this configuration is attractive due to the fact that, in spite of being physically 
two dimensional, it can be reduced to a one dimensional problem, by an appropriate similarity 
transformation, whilst at the same time preserving the essential features of the combustion. 
Analysis of this system can lead to conclusions that are applicable in more complex systems, in a 
manner analogous to the way that the study of flames in a laminar stagnation flow is the basis for 
the turbulent situation (Peters, 1984). 

The concept of the diffusion flame has been discussed extensively in the literature, by  
Greenberg (1989), Kuo (1986), and others (Allison and Clarke, 1980; Ishizuka, 1984; Chung and 
Law, 1984, Tambour and Katoshevski, 1994; Li et al., 1995; Daou and Linan, 1998; Katoshevski 
and Tambour, 2000) to cite just a few contributions. We will approach this special case from a 
different perspective focusing mainly on the location and shape of the flame. With respect to 
flame location an interesting feature is revealed in which its shift with the Schmidt number 
switches direction at a certain equivalence ratio depending on the velocity ratio.

The profound role played by the free stream velocity ratio in terms of flame characteristics did 
not gain a significant attention in the literature. Accounting for downstream pressure gradient has 
inspired the work by Marble and Hendricks (1986) who analyzed the case where the two streams 
move at the same velocity which is decreasing downstream.  

In the present work we thus focus on the influence of the subtleties of the shear layer flow field 
and chemical equivalence ratio on flame characteristics. 



Katoshevski, Aerosol and Air Quality Research, Vol. 6, No. 2, pp. 193-212, 2006 

195

PROBLEM FORMULATION, AND FLOW-FIELD SIMILARITY 
EQUATIONS 

A two dimensional steady laminar shear flow is considered. It is formed by two gaseous 
streams moving at different velocities, where one is basically the combustible species and the 
other, an oxidizer, in addition to an inert gas. Under the appropriate operating conditions a 
diffusion flame may occur in such a configuration, as described schematically in Fig. 1. For the 
frame of the current investigation, the chemical reaction is assumed to occur in a narrow flame 
sheet, and can be described by a global one-step kinetic procedure, that is, a representative single 
reaction (Tambour and Katoshevski, 1994). We consider the velocities to be small compared to 
the speed of sound, neglect viscous dissipation, radiation, the work done by the pressure, and the 
Dufour and Soret effects.

As shown in Fig. 1, the fuel stream is denoted by “I” and the oxidizer stream by “II”. The 
longitudinal and lateral directions are denoted by x and y, respectively and we distinguish here 
between the longitudinal free stream velocity of the fuel stream UI and that of the oxidizer stream 
UII, where

xÛU II   ; xÛU IIII     (1)-(2) 

x is a normalized longitudinal distance, and IÛ  and IIÛ  are characteristic longitudinal 
velocities for streams “I” and “II”. At present we consider constant–velocity or decelerating flows, 
that is the power is zero or negative (see also Katoshevski et al. 1993; Katoshevski and 
Tambour, 1994). However, the formulation is general and can handle downstream acceleration as 
well, that is, 

The Howarth boundary layer similarity formulation with longitudinal pressure gradient is 
performed, for the gas phase momentum equations. Defining a stream function and similarity 
variable ,
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first leads to the normalized similarity function for the velocity profile  
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      (5) 

where the prime denotes differentiation with respect to that is f’=df/d . Employing the 
Howarth transformation on the momentum equations leads to the following equation for the 
“upper” stream (stream “I” in Fig. 1) 

Fig. 1. Schematic description of the problem. 
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and for the “lower” stream (stream “II”),  
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At the edges of the shear layer, the boundary conditions are given by 
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: 1'f  (8) 

: III UUf /'  (9) 

At the interface, 0  there is continuity in terms of velocity and shear stress, that is, 

continuity of 'f , and ''f , respectively. 

As shown later, the velocity ratio, III U/U  that determines the momentum boundary condition 
at the oxidizer stream, is a key parameter in determining the location of the flame and its shape. 

In Eqs. (6)-(7) T  denotes normalized temperature and it is divided in these equations by its 
boundary values at the two edges of the shear flow, thus this ratio becomes unity in both outer 
flows. 

The above equations (Eq. (6)-(7)) for a shear layer with longitudinal pressure gradient and 
negative values of , are discussed in Katoshevski et al. (1993), in the isothermal context. The 
solution of these equations has an entirely different behavior than that of the case studied by 
Lock (1951). Zero  value leads to a single solution for the momentum equations, while when 
this parameter is negative there is an infinite number of solutions that satisfy the boundary 
conditions. The solution that is chosen is the one that admits an exponential behavior of the decay 
of the velocity profile as it reaches the outer flows boundary conditions (Katoshevski et al. 1993). 
In the course of the current work we will analyze the base case of zero  and asymptotically 
examine the effect of a small deviation of the power  from the base case  For that purpose we 
represent the function f as 

)( 210 Offf      (10) 

This leads, for both streams,  to the following zero's order equation,  O(1): 

0''''' )0()0()0( fff    (11) 

and the first order equation, O( ):

0'2''''''' 2)0()1()0()0()1()1( fgfffff    (12) 

Where,  

TTg /   (13) 
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for the upper stream, and for the lower one: 

TTUUg III // 2    (14) 

At the edges of the shear flow  ,0'' )1()1( ff and 2/,1 III UUgg

SOLUTION FOR THE GOVERNING SIMILARITY EQUATIONS 

In the current work we adopt the commonly used diffusion flame sheet concept in which the 
chemical reaction is taking place within a very narrow area. The above similarity transformation 
is employed on the equations for the temperature and species, which are also introduced as 
perturbed functions, similar to the above mentioned f function. Thus, for the normalized 
temperature, and for the fuel (sub-index f) and oxidizer (sub-index o) mass fractions we assume, 
respectively: 

)( 210 OTTT     (15) 

)( 210 Ommm fff     (16) 

)( 210 Ommm ooo     (17) 

where the O( ) terms vanish at the outer edges of the shear flow. 

This leads to the following equations for the normalized temperature and for the fuel and 
oxidizer mass fractions, which are considered as functions of O(1):

)('''Pr )0()0()0(1
FRQSTfT         (18) 

)(''' )0()0(1
FRfffff SMfmmSc            (19) 
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)(''' )0()0(1
FRooffo SMfmmSc        (20) 

and  for O( ):

0''''Pr )0()1()1()0()1(1 TfTfT     (21) 

0'''' )0()1()1()0()1(1
ffff mfmfmSc         (22) 

0'''' )0()1()1()0()1(1
oooo mfmfmSc         (23) 

In the above,  Q  denotes the normalized specific heat release, Pr is the Prandtl number, and Scf

and Sco are the Schmidt numbers for the fuel and oxidizer, respectively. SR is an Arrhenius-type 
of a reaction term based on a one step global chemical reaction scheme. The term )( F  is a 
Dirac delta function which sets to zero the chemical source terms outside of the flame sheet that 
is located at F . This representation of the reaction implies that an explicit form for the 
reaction term plays no role, as will become clear in short. 

The solution for the zero's order incorporates the following defined function, 

ofi
ddfSc

ddfSc
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0

)0(

, T  (24) 

where for i=T  the Schmidt number Sc is replaced by the Prandtl number Pr.
For the species distributions one obtains, 
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and
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o
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where ,fm  and ,om  denote the boundary conditions at the outer edges of the shear flow. 

Each of the species exists only on one side of the flame sheet. Pollutants, which are products of 
the chemical reaction, will have a maximum peak of concentration at the flame location. As the 
flame location is determined here by the reactants, the pollutants' concentrations will not have an 
effect on that. F , as already mentioned, denotes flame location in terms of the similarity 
variable. This location is determined by 

f

o

Ff

Fo

Fo

Ff

Sc
Sc

'F
'F

F
F1

  (27) 

where  is the product of the stoichiometric and concentration ratios at  (assuming non-
zero oxidizer concentration), and is similar to the “equivalence ratio” used in other studies of 
diffusion flames (Allison and Clarke, 1980), 

,o

,f

m
m

ˆ .  (28) 

Next, in order to obtain the approximated flame temperature )0(
maxT we first write the 

expressions describing the temperature distribution 
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and employ a jump condition for the temperature, leading to 
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where Q/M* oo .
What remains in order to complete this part of the solution is an expression for F( ). This is 

possible in cases where the function f( ), that is the solution for the momentum equations (Eqs. 
(6)-(7)), could be replaced by an explicit approximation. One such an example of an 
approximation is easily obtained in case where there is a negligible velocity difference between 
the two streams, that is, in the limit 1III U/U .  In this case, for a qualitative analysis (which 
will soon turn out as being valuable), one may assume a linear behavior for the function f in terms 
of , and simply replace f by  In the limit considered,  f =  is a solution for Eqs. (6) and 7 
(which become identical), and satisfies the boundary condition for f( ) at =0, where f( =0)=0 
(Lock, 1951), and also satisfies the condition for its derivative at , that is f’( )=1.
F( ) is then evaluated as 

21

2

2

21
2
1

2

2 //Scerf
dScexp

dScexp
F   (32) 

Substituting this in Eq. (27), for equal Schmidt numbers of the two species, the flame location 

F  is then found approximately from 

112 21 //Scerf F
/ .  (33) 

Such an approximation is valuable for a qualitative analysis of the behavior of the flame 
location with changes in the Schmidt number when 1III U/U .  It reveals an interesting 
feature, in which, as Sc increases, the flame can shift either “up” or “down” depending on the 
value of A shift of a flame due to a change in diffusion rate and reactants' concentrations in the 
free flows is an expected phenomenon, but here we will show how the turning point of that shift 
is controlled by the velocity ratio. As will be shown next, the shift up and down of the flame 
exists, not only when the two streams move at about the same velocity, 1III U/U , but even at 
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the other extreme in terms of velocity ratio, that is at 0III U/U  where one stream is moving 
and the other is at rest.

After the zero-order of solution is obtained, the effect of low extent of downstream 
deceleration (or acceleration) can be obtained by solving simultaneously the set of equations (Eq. 
(12)) and (Eqs. (21)-(23)), which result in correction terms for the velocity, temperature and 
species distributions. This effect will be presented later after a further insight into analytical 
findings regarding the base case of constant flow velocities. 

Analysis of the leading order solution: a diffusion flame in a shear flow without downstream 
velocity variation 

We deal now with the situation where both streams move at constant velocities. It actually 
coincides with the zero-order solution mentioned above. This category of cases includes the 
classical shear layer, which is formed when one stream moves at constant velocity and the other 
is at rest.  For all these cases =0, and the momentum equations (Eqs. (6)-(7)) for both streams 
reduce to 

0''ff'''f . (34) 

where here we omit for convenience the upper index "0" used earlier for the zero-order 
problem.   

This equation enables the expression for F( ) (Eq. (24)) to be simplified using the following 
relation arising from it 

00 ''f
''flndf  (35) 

which, when substituted into Eq. (24) leads to 

d''f

d''f
F

Sc

Sc

 (36) 

for same species Schmidt numbers. For unity Schmidt numbers this reduces to 
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'f'f
'f)('fF  (37) 

where III U/U'f . In the above mentioned classical case where stream “I” moves at 
constant velocity and stream “II” is at rest 0'f and Eq. (27)  reduces even further to 

'fF  (38) 

so that F( ) is replaced here by the normalized velocity distribution. 
Complete sets of numerical distributions for the normalized velocity 'f  for various 

constant-velocity shear layers, including the above case, were given by Lock in 1951. Thus, these 
sets of values can serve here, together with Eqs. (27) 27 and 38, for obtaining the flame location 

F in terms of the parameter , without any numerical effort, by 

11F'f  (39) 

The same applies to the flame shape. The value of F determines the flame shape in the x-y 
plane by Eq. (4), without considering density variations (Katoshevski and Tambour, 2000), where 
for =0

212 /
FF xxy  (40) 

It should be noted that the interface between the two streams is assumed here at as was 
taken by Lock (1951) as well as by others, but this is not justified yet in the literature, and a shift 
along the coordinate may still be feasible, unless it is determined by experimental tools. 

Referring to Lock’s work (1951), for the 0III U/U  case,  the similarity variable changes 
from negative to positive at  f’=0.5873, so that the flame shape could be categorized using Eqs. 
(39)-(40) as follows, in terms of the equivalence ratio ,

                  Flame Shape          Fxy

< 0.703 

= 0.703 

> 0.703 

x~

= 0 ; Flat Flame 

x~
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Now, after the location and shape of the flame in the above considered case are known, in 

order to complete the solution, maxT is calculated from Eq. (31), and the fuel and oxidizer profiles 

are readily obtained from Eqs. (25) and (26) as, 

TTT
'f
'fT

;m
'f

'f'fm

max
F

,f
F

F
fF

1
1

1
 (41a,b)  

TTT
'f
'fT

;m
'f
'fm

max
F

,o
F

oF 1
 (42a,b) 

Note that in the above terms the Schmidt numbers are unity. The corresponding terms for the 

case where of ScSc  (or of LeLe ) could be deduced from Eqs. (24)-(26) and 29-30. 

For the numerical representation we consider an n-decane – oxygen flame. The base case will 
be refereed here to III U/U = 0,  Scf = Sco=1, = 0.703 and F = 0, that is a flat shaped flame 
sheet. The effect of the velocity ratio III U/U on the flame location and its shape will be 
discussed next, in the results and discussion section.

RESULTS AND DISCUSSION 

In the course of the study we first start with the cases of constant stream velocities and later we 
will address the role of downstream deceleration. Hence, we will now show results for the 
constant velocities, starting with a base case of Scf = Sco= Sc =1. When analyzing the parameters 
influencing the flame properties in this configuration, the effect of the velocity ratio III U/U on
the flame shape is found to be of high importance, and could be addressed by making use of Eqs. 
(27) and (37), which leads to 

11 /
U
U'f

I

II
F  (43) 
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If, for example III U/U =1/2, according to Lock (1951)  f’(0)=0.7657, so that a flat flame in 
this case corresponds to an equivalence ratio of 0.8818. For a velocity ratio III U/U =1/4, 
f’(0)=0.6661, then =0.8025, and for III U/U =3/4,  f’(0)=0.8784 and =0.9470. Other 
combinations of III U/U  and  leading to a flat shaped flame could be deduced from Fig. 2. This 
figure indicates the flame sheet shape regimes in the III U/U  -  plane, and it could serve in pre-
designing of experiments and facilities where a flame may exist between two streams moving at 
different velocities, when both Schmidt numbers are of the order of unity.  

Next, we describe the case where Scf = Sco= Sc  1.  The effect of the Schmidt number, Sc, on
the flame location, in terms of  is shown in Fig. 3. In this case 0III U/U , that is when stream 
“I” is in motion and stream “II” is at rest. For a fixed Schmidt number, as expected, an increase of 
the equivalence ratio value , which either increases the fuel mass fraction at the “upper” stream  

,fm  or decreases  the oxidizer mass fraction at the “lower” stream ,om , would  lead to a shift of 

the flame “down” towards the oxidizer stream, in order to reach the stoichiometric zone.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.7 0.75 0.8 0.85 0.9 0.95

U
II
/U

I Flame Shape

Fig. 2. Flame shapes regimes as a function of free streams velocity ratio III U/U and
equivalence ratio . Scf = Sco=1.

Interestingly, when the Schmidt number is changed, “a turning point” in the shift direction of 
the flame is revealed (see Fig. 3).  In the lower range of values, the flame shifts downwards 
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with an increase in Sc, up to a turning point tp  where the flame starts to shift upwards. In the 

figure, calculations for Sc=0.5 and Sc=2.0 are chosen arbitrarily, but calculations for other 
Schmidt number values as well, for example Sc=1.0 show that their lines cross also through the 
same turning point. The possible existence of such a turning point feature has been already 

indicated here mathematically by Eq. (33). This turning point of the equivalence ratio, tp , is 

found to be governed by the velocity ratio III U/U , as shown in Fig. 3. The impact of increasing 

the velocity ratio is two fold: (1) an increase of the tp  value; and (2) a reduction in the 

sensitivity to changes in the Schmidt number. At the limit, in which 1III U/U , according to 

Eq. (33), for any Sc value tp would equal unity.  Eq. 33  shows  also that for the latter limiting 

case, for a fixed value, an increase in Sc leads to a decrease in the absolute value of F , thus Sc
serves as a stabilizer which in this case maintains the flame close to a flat one.  In the other cases 
where the velocity ratio does not tend to unity, as in Fig. 3,  the Schmidt number again serves as a 
stabilizer but in a broader sense which is to maintain the flame location within the interaction 
zone between the two streams, that is, within the shear layer.  This figure also shows that for =1,
and III UU /  close to 0.5, the location of the flame is in the vicinity of 0, which is in a 
qualitative agreement with the findings of Mungal and Dimotakis (1984), even though in their 
case the flow was turbulent.  
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Fig.  3. Effect of the velocity ratio III U/U on the “flame shift turning point” (marked by 
the arrows). Broken lines: 0III U/U , Sc=0.5, 2.0;  Solid lines: 50.U/U III ,
Sc=0.5, 2.0. Lef =Leo . 

Finally, the of ScSc  case is described in Fig. 4 in terms of the Lewis numbers (Le=Sc/Pr).

We first keep the oxidizer Lewis number as unity and use our base case value of 0.703, and 
describe the changes in flame location as a function of the fuel Lewis number. As the fuel Lewis 
number Le(Fuel) increases the flame shifts towards the fuel stream to a lower oxygen 
concentration zone. Then, upon increasing our fixed number of the oxidizer Lewis number Le(Ox) 
to 1.4, it is shown correspondingly in Fig. 4, that such an increase in Le(Ox) leads to a flame 
which is located closer to the oxidizer outer flow. Note that in Fig. 4, the increase in fuel Lewis 
number shifts the flame location from negative F  values to positive ones. Thus, it causes the 
flame sheet to change its shape from the x  form into a flat one and change further to acquire 
the x  shape. 
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Fig. 4. Flame location as a function of fuel and oxygen Lewis numbers. Parameters used:
0III U/U , = 0.703.

The role of downstream velocity deceleration 
We have examined the effect of downstream flow variation, and specifically flow deceleration, 

on both, the flame location in the similarity plane as well as on its shape in the physical two-
dimensional plane. The constant velocity is represented here by the power =0 in Eqs. (1) and (2), 
while = 0.1, is for a downstream decelerating flow. As already mentioned, zero value leads 
to a single solution for the momentum equations, while when this power is negative there is an 
infinite number of solutions that satisfy the boundary conditions. Thus in such a complex case, 
one sets a criterion for choosing a solution, and it has been found (Katoshevski et al. 1993) that 
only one solution admits an exponential behavior of the decay of the velocity profile as it reaches 
the outer flows boundary conditions. In contrast to the constant velocity case, as mentioned 
earlier with respect to Eqs. (6) and (7), here, a restriction is unavoidable, which is 

IIIIII /U/U 2 . Fig. 5 accounts for that restriction, unlike Fig. 1-4. 

The change in the velocity profile from the constant-velocity case, =0, to the decelerating 
case, = 0.1  has an effect on the flame location in the similarity plane, as shown in Fig. 5. A 
downstream deceleration shifts up the flame towards the fuel stream as the extent of forced 
convection across the shear layer becomes weaker and the stoichiometric conditions are obtained 
in an upper area in the fuel stream.  The figure also shows that as the equivalence ratio increases 
the deviation between the two lines is changing, hence, the role of the equivalence ratio is 
somewhat different for different behavior of flow downstream variation.
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Finally, the effect of downstream deceleration on the physical shape of flame sheet in the x-y 
plane is described in Fig. 6. The effect is significant, even when, for simplicity, considering the 
same F value. This, in addition to an upper shift in the value of F described in Fig. 5 implies 
that a downstream velocity deceleration not only shifts the flame location towards the fuel stream 
but also changes the curvature of the flame.   

Fig.  5. Effect of flow deceleration on flame location, for Sc=1.

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3

y /|
 F

|

x

(const. flow velocity)

(decelerating flow)

Fig.  6. Effect of flow deceleration on flame shape for the same F .
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CLOSURE

The mathematical study presented here of a diffusion flame in shear layer flow elucidates the 
profound role of the velocity distribution across the shear layer. An equivalence ratio “turning 
point” is shown to exist in the shift of the flame location from one stream towards the other with 
increasing Schmidt number. Here as well, the value of the corresponding “turning point” 
equivalence ratio where the shift changes direction is found to be governed by the velocity 
distribution which is driven by the free stream velocity ratio III U/U . In addition, this ratio 
governs also the sensitivity of the flame location to changes in Schmidt number. This sensitivity 
is reduced with increasing velocity ratio.  

From another point of view, for a fixed value of the equivalence ratio, the Schmidt number is 
shown to play the role of a stabilizer which forces the flame to be situated closer to the interface 
between the two streams.  This becomes more profound as the velocity ratio decreases. 

The effect of downstream velocity deceleration is also addressed, in terms of flame location 
and shape. It is presented as a function of the equivalence ratio implying that the role of the 
equivalence ratio on flame location is influenced by downstream velocity variation. 

The current analytical formulation could serve as a practical tool for the prediction of the 
trends in flame location and shape as a function of the velocity field and of various fuel and 
oxidizer species involved in the formation of such a diffusion flame, as well as a test case for a 
more detailed and numerical analysis.  Also, the trends shown here, in response to changes of the 
various operating conditions can be used to manipulate flame characteristics and hence to affect 
the out-coming emissions from fires in related configurations.    

LIST OF NOTATIONS 

f function of
Le Lewis number 
m mass fraction
M molecular weight 
P normalized pressure 
Pr Prandtl number 
Sc Schmidt number 
T normalized temperature 

u longitudinal velocity of the gas flow 
x normalized longitudinal coordinate 

cx̂ characteristic longitudinal distance 
y normalized lateral coordinate
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power of x in the expression for the outer velocity U
similarity variable 

 density
viscosity

ˆ  stoichiometric ratio
stream function 

 equivalence ratio,  ,o,f m/mˆ

Subscripts
I denotes the fuel stream 
II denotes the oxidizer stream 
f   fuel 
o   oxidizer 
F indicates the flame sheet 

 indicates the outer free streams  

REFERENCES

Allison, R. A. and Clarke, J. F. (1980).  Theory of Hydrogen-Oxygen Diffusion Flame, Part I: 
Profiles from a Large Damkohler Number Model, Comb. Sci. Tech., 23:113-123 (1980). 

Burke, S.P. and Schumann, E. W. (1928). Diffusion Flames, Indust. Eng. Chem., 20:998-1004. 
Chung, S. H. and Law, C. K. (1984). Burke-Schumann Flame with Streamwise and 

Preferential Diffusion, Comb. Sci. Tech., 37:21-46.
Daou, J. and Linan, A. (1998). Triple Flames in Mixing Layers with Nonunity Lewis numbers,  
 Proc. Comb. Inst., 25:667-674.
Greenberg, J. B. (1989). The Burke-Schumann Diffusion Flame- With Fuel Spray Injection, 

Comb. Flame, 77:229-240.
Ishizuka, S. and Tsuji, H. (1984). Effect of Transport Properties and Flow Non-Uniformity on 

the Temperature of Counterflow Diffusion Flames, , Comb. Sci. Tech., 37:171-191.
Katoshevski, D., Frankel, I. and Weihs, D. (1993). Viscous Interaction Between Parallel Radial 

Streams, Fluid Dyn.  Res. ,12:153-161.
Katoshevski, D. and Tambour, Y. (1993). A Theoretical Study of Polydisperse Liquid-Sprays in a 

Shear-Layer Flow, Phys.  Fluids A, 5(12):3085-3098. 
Katoshevski, D. and Tambour, Y. (2000). On the Combustion of Sprays of Liquid Fuels and 

Liquid Oxidizers in a Diffusion Flame in a Shear Layer  Flow, Proc. Comb. Inst., 28: 
1087-1094.



Katoshevski, Aerosol and Air Quality Research, Vol. 6, No. 2, pp. 193-212, 2006 

212

Kuo, K. K. (1986). Principles of Combustion, John Wiley and Sons, NY, NY.,   
pp. 516-518. 

Li, S.C., Gordon, A. S., and Williams, F. A. (1995). A Simplified Method for the 
Computation of Burke-Schumann Flames in Infinite Atmospheres, Comb. Sci. Tech., 
104:75-91.

Lock, R. C. (1951). The Velocity Distribution in the Laminar Boundary Layer Between 
Parallel Streams, Quart. J. Mech. Appl. Math., 4:43-64.

Marble, F. E., Hendricks, G. J. (1986). Structure and Behavior of Diffusion Flames in a 
Pressure Gradient, Proc. Combust. Inst., 21:1321-1327.

Mungal, M. G., Dimotakis, P. E. (1984). Mixing and Combustion with Low Heat Release in a 
Turbulent Shear Layer, J. Fluid Mech., 148:349-382.

Peters, N. (1984).  Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion, 
Prog.  Ener. Comb.  Sci., 10:319-339. 

Tambour, Y. and Katoshevski, D. (1994). Similarity Analysis of Spray Diffusion Flames in a 
Unidirectional Shear-Layer Flow, Proc. Comb. Inst., 25:381-388.

Received for review, April 05, 2006
 Accepted, May 17, 2006 


