Direct Conversion of Methane into Methanol and Formaldehyde in an RF Plasma Environment I: A Preliminary Study

Ya-Fen Wang^{a*}, Cheng-Hsien Tsai^b, Minliang Shih^c, Lien-Te Hsieh^d and Wen-Ching Chang^c

 ^aDepartment of Bioenvironmental Engineering, Chung Yuan Christian University, No. 200, Chung Pei Road, Chung-Li 320, Taiwan
 ^bDepartment of Chemical Engineering, National Kaohsiung University of Applied Sciences, No. 415, Chien Kung Road, Kaohsiung 807, Taiwan
 ^cDepartment of Environmental Engineering and Science, Chia-Nan University of Pharmacy and Science, No. 60, Sec. 1, Erh-Jen Road, Tainan 717, Taiwan
 ^dDepartment of Environmental Engineering and Science National Pingtung University of Science and Technology, 1Hseuh Fu Rd., Nei Pu Hsiang, Ping Tung, 912, Taiwan

ABSTRACT

The direct conversion of methane (CH₄) into methanol (CH₃OH) and HCHO in an Argon (Ar) 50W radio-frequency plasma system was applied and the effects of various feed compositions, CH₄/O₂ ratio, and plasma discharge areas were compared. Additionally, the effects of various methane to oxygen ratios and plasma discharge areas were studied. It was found that in an Ar stream, the CH₃OH conversion ratio in the CH₄/O₂ plasma system was higher than that in CH₄/CO, CO/H₂ and CH₄/H₂/O₂ plasma systems. The conversion of CH₄ reached 19.1% at CH₄/O₂ = 40/60; the yield of CH₃OH was 1.12% and 16.0% CO, the major product, was produced. A larger plasma discharge area, resulting in a longer residence time, corresponded to higher CH₄ conversion, but a lower CH₃OH conversion ratio, because of further decomposition into CO and CO₂. Interestingly, no carbon deposition was observed in the RF plasma system, and the carbon balance was between 0.94 and 1.19.

Keywords: Methane, methanol, formaldehyde, radio-frequency plasma

^{*} Corresponding author. Tel: +886-3-2654904 ; Fax: +886-3-2654949

E-mail address: yfwang@cycu.edu.tw

INTRODUCTION

Methane (CH₄) is a major contributor to the human-caused greenhouse effect. Much attention has been paid to the conversion of methane into higher hydrocarbons and easily transportable liquids, such as methanol (CH₃OH) and formaldehyde (HCHO). It is expected that methane will become increasingly important in the production of energy and chemicals during this century (Roth, 1994; Brown and Parkyns, 1991). Of all available direct conversion processes, the partial oxidation of methane into useful oxygenates has great potential and is considered to be one of the greatest challenges for catalysis (Gesser, et al. 1985; Crabtree, 1985; Krylov, 1993).

Direct conversion technology could significantly impact the realization of more efficient energy, conserving resources and protecting the atmosphere by reducing the concentration of exhausted greenhouse gas. The difficulty in the direct conversion of methane, both catalytically and thermally, concerns the high stability of the C-H bond in the methane molecule, which exceeds that in all other hydrocarbons (Lunsford, 2000). Catalytic methods of methane conversion must eliminate the need for high reaction temperatures and the poisoning of catalysts (Lodeng et al., 1995). Accordingly, the direct synthesis of methanol from methane can support a new synthetic process that consumes much less energy.

Nonthermal plasma has been used recently to excite small, stable molecules, using energetic electrons and no heating of gases. Energetic electrons are generated using either a corona, a pulse discharge, a microwave discharge, or a dielectric-barrier discharge (Suib et al. 1993; Liu et al. 1999; Huang et al. 2000). The products of methane conversion obtained using nonthermal plasma are mainly ethylene, acetylene, hydrogen, carbon monoxide, carbon dioxide, and some oxygenates. Some of results have led to the formation of carbon black and plasma polymerized carbon film. Very few studies have used a radio-frequency (RF) plasma system to examine the direct conversion of methane into a useful liquid fuel. In this work, the direct conversion of methane into methanol in an RF plasma system was applied and the effects of various feed compositions were compared. Additionally, the effects of various methane to oxygen ratios and plasma discharge areas were studied.

METHODS

Figure 1 illustrates the RF plasma reactor used and schematically depicts the experiment's setup. Reactants CH₄/CO/Ar, CO/H₂/Ar, CH₄/O₂/Ar, and CH₄/O₂/H₂/Ar were metered using Brooks Type 5850E mass flow controllers at a total flow of 100 cm³.min⁻¹. They were then separately introduced into the reactor (4.5 cm I.D. \times 15 cm height). The inside of the reactor was separated into two sections by a

Fig 1. Sketch of the RF plasma system

glass plate to dissociate the input gases individually and then recombine them in the effluent of the reactor. This particular reactor design was intended to improve the possibility of recombining free radicals and prevent the decomposition of CH₃OH in the reactor once it was formed. A plasma generator (PFG 600 RF, Fritz Huttinger Elektronik Gmbh) at 13.56 MHz, with a matching unit (Matchbox PFM), produced the RF plasma discharge. The pressure of the system had to be adjusted to under 0.0013 mbar before the experiments were performed to eliminate background contamination. Reactants and final products were first identified by gas chromatography (HP5890A); then all species were identified and their concentrations quantified using an on-line Fourier Transform Infrared (FTIR) Spectrometer (Thermo Nicolet AVATRA 360).

FTIR quantification data were obtained through a carbon balance to evaluate the significance of both deposition and condensation in the sampling and analyzing apparatus.

$$CB = \frac{\sum_{i=1}^{n} [(C_{out})_i \times (N_i)]}{[CH_4]_f}$$

 CH_4 was partially oxidized at 13.3 mbar and 50W. The conversion of CH_4 (X_{CH4}) and fraction of total input carbon converted into CH_3OH (F_{CH3OH}), HCHO (F_{HCHO}) and $C_2H_2 + C_2H_4 + C_2H_6$ (F_{C2}) were calculated as,

$$X_{CH4} = \frac{[CH_4]_c}{[CH_4]_f} \times 100\%$$
(1)

$$F_{CH3OH} = \frac{[CH_3OH]_p}{[CH_4]_f} \times 100\%$$
(2)

$$F_{HCHO} = \frac{[HCHO]_p}{[CH_4]_f} \times 100\%$$
(3)

$$F_{C2} = \frac{[C_2H_2 + C_2H_4 + C_2H_6]_p \times 2}{[CH_4]_f} \times 100\%$$
(4)

 $(C_{out})_i$ is the concentration of species i in the effluent (%) N_i is the number of carbon atoms in the chemical formula for species i in the effluent n is the total number of species in the effluent $[CH_4]_f$ is the CH₄ feeding concentration (%) $[CH_4]_c$ is the amount of CH₄ consumed (%) $[CH_3OH]_p$ is the amount of CH₃OH produced (%) $[HCHO]_p$ is the amount of HCHO produced (%) $[C_2H_2 + C_2H_4 + C_2H_6]_p$ is the amount of $C_2H_2 + C_2H_4 + C_2H_6$ produced (%).

RESULTS AND DISCUSSION

SYNTHESIS OF METHANOL AND FORMALDEHYDE FOR VARIOUS FEED COMPOSITIONS

Table 1 shows X_{CH4} , F_{CH3OH} , F_{HCHO} and by-products in various RF plasma systems (CH₄/CO/Ar, CO/H₂/Ar, CH₄/O₂/Ar, and CH₄/O₂/H₂/Ar), as well as the ratio of the various reactants. The experimental conditions were: 50W applied power; 13.3 mbar operational pressure, and 100 cm³.min⁻¹ total flow. The combination of reactants affects the patterns of the by-products in the effluent. X_{CH4} was present in the least amount and no CH₃OH or HCHO was formed in the CO/H₂/Ar system. Only CO₂, CH₄ and H₂O were produced in the CO/H₂/Ar system. In contrast, more by-products—CO, CO₂, CH₃OH, HCHO, C₂H₂, C₂H₄, C₂H₆, H₂O and H₂—were detected in the CH₄/CO/Ar and CH₄/O₂/Ar system. Interestingly, neither HCHO, nor hydrocarbons were detected in the CH₄/O₂ ratio of 30/60. Increasing the CH₄/O₂ ratio to 30/7 reduced the F_{CH3OH} in all except the CH₄/CO/Ar system. Based on these results, the CH₄/O₂/Ar combination was chosen in the following experiment.

	CH ₄ /CO/Ar		CO/H ₂ /Ar		CH ₄ /O ₂ /Ar		CH ₄ /O ₂ /H ₂ /Ar	
ratio	30/60/10	30/7/63	30/60/10	30/7/63	30/60/10	30/7/63	30/30/30/10	30/7/7/46
X _{CH4} (%)	15.2	11.3	3.55	5.04	20.9	14.3	26.6	17.2
F _{CH3OH} (%)	0.05	0.07	0.00	0.00	0.96	0.14	0.50	0.07
By-products	CO ₂ , CH ₃ OH, HCHO, C ₂ H ₂ , C ₂ H ₄ , C ₂ H ₆ , H ₂ , H ₂ O		$CH_4 \circ CO_2$		$\begin{array}{c} \text{CO}_2, \text{CO}, \text{CH}_3\text{OH}, \\ \text{HCHO}, \text{C}_2\text{H}_2, \text{C}_2\text{H}_4, \\ \text{C}_2\text{H}_6, \text{H}_2, \text{H}_2\text{O} \end{array}$		CO ₂ , CO, CH ₃ OH, H ₂ O	

Table 1. The reaction combination of different reactants.

METHANOL AND FORMALDEHYDE SYNTHESIS WITH VARIOUS CH₄ TO O₂ RATIOS

Table 2 presents the effect of a CH₄/O₂ feeding concentration on the conversion of CH₄. Pure CH₄ has typically been regarded as rather chemically inactive, but easily decomposes in the RF plasma system. Unlike in other studies (Matsumoto, et al. 2001), X_{CH4} was less than 12% at a 2% CH₄ feeding concentration, and a 50 cm³/min⁻¹ total flow rate, while X_{CH4} was about 4% with a 5.0 mL/min⁻¹ CH₄ flow rate (Taylor et al. 2000). X_{CH4} with typical solid catalysts reported by Otsuka (2001) was 0.7% to 18.5%. In the RF system, applying 50W yielded 14.8 to 38.1% CH₄ conversion, while in the DBD system, 100W of input power yielded 5.97% CH₄ conversion (Jiang et al. 2002). Matsumoto (2001) stated that the intensities in Ar excitation drastically declined upon the introduction of a feeding concentration of CH₄ of only 2% into the Ar stream, and their system exhibited a large energy transfer from excited Ar species to reactant molecules. This suggestion was extended to the RF system. X_{CH4} was higher in the RF plasma system with Ar inflow (CH₄/O₂ at 30/60 and 50/40) than in that without (CH₄/O₂ = 40/60, 50/50).

The highest F_{CH3OH} , F_{HCHO} and F_{C2} were 1.12, 11.9 and 1.56% with CH₄/O₂ ratios equaling 40/60, 8/8 and 8/8, respectively. The highest F_{CO} and F_{CO2} were 24.9 and 23.1% with CH₄/O₂ ratios of 8/8 and 50/50, respectively. Interestingly, F_{C2} generally decreased as the CH₄ and O₂ feeding concentrations increased. No carbon deposition occurred in the Matsumoto et al. RF system, and the carbon balance was 0.97 to 1.19.

CH ₄ /O ₂ ratio	X _{CH4} (%)	F _{CO} (%)	F _{CO2} (%)	F _{CH3OH} (%)	F _{HCOH} (%)	F _{C2} (%)	Carbon balance
8/8	38.1	24.9	13.4	0.79	11.9	1.56	1.14
30/60	20.9	16.4	7.20	0.96	0.24	0.33	1.04
40/60	19.1	16.0	6.38	1.12	0.18	0.28	1.05
50/40	19.3	11.2	3.04	0.90	0.80	0.24	0.97
50/50	14.8	8.71	23.10	0.15	1.91	0.02	1.19

Table 2. The effect of CH₄ to O₂ ratio on CH₄ conversion.

METHANOL AND FORMALDEHYDE SYNTHESIS FOR VARIOUS PLASMA DISCHARGE AREAS

Table 3 shows the effect of the plasma discharge area on CH₄ conversion. Experimental conditions were $[CH_4]_{in} = 8\%$, $[O_2]_{in} = 8\%$, applied power = 50 W and operational pressure = 13.3 mbar. Increasing the discharge area increased the residence time thus increasing X_{CH4}. Increasing the discharge area reduced F_{CH3OH} and F_{C2}, while F_{HCHO} initially increased but then fell. F_{CO} and F_{CO2}, meanwhile, increased with increased discharge area. A longer residence time favored the formation of CO and CO₂ as final products of the dominant reaction pathway (Matsumoto et al. 2001). CH₃OH is oxidized into HCHO and further decomposed into CO and CO₂ when the residence time is increased. Therefore, a smaller discharge area favors the production of CH₃OH.

Direct conversion of methane into methanol in the RF plasma system was shown to be possible, indicating a potential for extensive abatement and reuse of methane. Experiments were conducted to clarify the influence of feed composition on CH₃OH formation, on CH₄/O₂ ratio and on the plasma discharge area. Experimental results revealed that the combination CH₄/O₂/Ar system favors a better CH₃OH conversion fraction. The by-products detected in the CH₄/O₂/Ar plasma system were CO, CO₂, CH₃OH, HCHO, C₂H₂, C₂H₄, C₂H₆, H₂O and H₂. For various CH₄/O₂ ratios, the highest F_{CH3OH}, F_{HCHO} and F_{C2} were 1.12, 11.9 and 1.56% with CH₄/O₂ ratios of 40/60, 8/8 and 8/8, respectively. The highest F_{CO} and F_{CO2} were 24.9 and 23.1% with CH₄/O₂ ratios of 8/8 and 50/50, respectively. Moreover, a larger plasma discharge area, resulting in a longer residence time, led to higher CH₄ conversion, but a lower CH₃OH conversion ratio, owing to further decomposition into CO and CO₂. Therefore, the CH₄/O₂/Ar plasma system of reactor A was selected as the basis for the further investigation of the effects of experimental parameters on X_{CH4}, F_{CH3OH} and F_{HCH0}.

Discharge area (cm^3)	X _{CH4} (%)	F _{CO} (%)	F _{CO2} (%)	F _{CH3OH} (%)	F _{HCOH} (%)	F _{C2} (%)	Carbon balance
A (320)	38.1	24.9	13.4	0.79	11.9	1.56	1.14
B (450)	65.2	31.6	26.2	0.42	15.3	1.47	1.10
C (1080)	88.6	35.3	38.6	0.43	6.60	1.39	0.94

Table 3. The effect of plasma discharge area on CH_4 conversion.

ACKNOWLEDGMENTS

The authors would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract No. NSC-91-2211-E-041-009.

REFERENCES

- Brown, M.J. and Parkyns, N.D. (1991), Progress in the Partial Oxidation of Methane to Methanol and Formaldehyde. *Catal. Today* 8, 305-335.
- Crabtree, R.H. (1995), Aspects of Methane Chemistry. Chem. Rev. 95, 987-1007.
- Gesser, H.D., Hunter, N.R., Prakash, C.B. (1985), The Direct Conversion of Methane to Methanol by Controlled Oxidation. *Chem. Rev.* 85, 235-244.
- Huang, A., Xia, G., Wang, J., Suib, S. L. (2000), CO₂ Reforming of CH₄ by Atmospheric Pressure ac Discharge Plasmas. J. Catal. 189, 349-359.
- Jiang, T., Li, Y., Liu, C.-J., Xu, G.-H., Eliasson, B., Xue, B. (2002), Plasma Methane Conversion Using Dielectric-Barrier Discharges with Zeolite. *Catal. Today* 72, 229-235.
- Krylov, O.V. (1993), Catalytic Reactions of Partial Methane Oxidation. Catal. Today 18, 209-302.
- Liu, C.-J., Mallinson, R., Lobban, L. (1999), Comparative Investigations on Plasma Catalytic Methane Conversion to Higher hydrocarbons over zeolites. *Appl. Catal.* A 178, 17-27.
- Lodeng, R., Lindvag, O.A., Soraker, P., Roterud, P.T., Onsager, O.T. (1995), Experimental and Modeling Study of Selective Homogeneous Gas Phase Oxidation of Methane to Methanol. *Ind. Eng. Chem. Res.* 34, 1044-1059.
- Lunsford, J.H. (2000), Catalytic Conversion of Methane to More Useful Chemicals and Fuels: A Challenge for the 21st Century. *Catal. Today* 63, 165-174.
- Matsumoto, H., Tanabe, S., Okitsu, K., Hayashi, Y., Suib, S. L. (2001), Selective Oxidation of Methane to Methanol and Formaldehyde with Nitrous Oxide in a Dielectric-Barrier Discharge-Plasma Reactor. *J. Phys. Chem.*, A 105, 5304-5308.
- Otsuka, K. and Wang, Y. (2001), Direct Conversion of Methane into Oxygenates. *Appl. Catal.* A 222, 145-161.
- Roth, J.F. (1994), Evolving Nature of Industrial Catalysis. Appl. Catal. A 113, 131-140.
- Suib, S.L. and Zerger, R.P. (1993) A Direct, Continuous, Low Power Catalytic Conversion of Methane to Higher Hydrocarbons via Microwave Plasmas. J. Catal. 139, 383-391.
- Taylor, C.E. and Noceti, R.P. (2000), New Developments in the Photocatalytic Conversion of Methane to Methanol. *Catal. Today* 55, 259-267.

Received for review, July 2, 2005 Accepted, October 16, 2005