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Abstract

A one-year series of hourly average PM10 observations, which was obtained from the urban and 
national park air monitoring station at Taipei (Taiwan), was analyzed by descriptive statistics and 
fractal methods to examine the temporal structures of PM10 concentrations. It was found that all PM10

measurements exhibited the characteristic right-skewed unimodal frequency distribution and 
long-term memory. A monodimensional fractal analysis was performed by transferring the PM10

concentration time series into a useful compact form: the box-dimension (DB)-threshold (Th) and 
critical scale (CS)-threshold (Th) plots. Scale invariance was found in these time series and the box 
dimension was shown to be a decreasing function of the threshold PM10 level, implying multifractal 
characteristics, (i.e., the weak and intense regions scale differently). To test this hypothesis, the PM10

concentration time series were transferred into multifractal spectra, i.e., the (q)-q plots. The analysis 
confirmed the existence of multifractal characteristics. A simple two-scale Cantor set with unequal 
scales and weights was then used to fit the calculated (q)-q plots. This model fits well with the entire 
spectrum of scaling exponents for the examined PM10 time series. The relationship between the 
fractal parameters and classical statistical characteristics, as well as some problems concerning the 
applicability of fractal methods on air pollution, are discussed.  
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Figure 1. Time series of PM10 concentration in 1998, as measured at the Wan-Hwa station. 

1. Introduction 

PM10 is defined as particles with an aerodynamic diameter of approximately 10 m or less, which 
means they can be inhaled. The processes of PM10 are complex because of the great number and 
variety of sources. The persistence of PM10 pollution is a result of industrial and societal 
developments, but is also influenced by meteorological factors (van der Wal and Janssen, 2000). In 
Taiwan, the levels of PM10 and other air pollutants are measured by the Taiwan Air Quality 
Monitoring Network (TAQMN). The Pollutant Standards Index (PSI) is used to inform the public 
about the current air quality and its health effects. It is found that in Taipei, two major contributors to 
high PSI values (poor air quality) are ozone (O3) and PM10. Because recent epidemiological studies 
have shown that suspended particulate matter influences respiratory health considerably (Dockery et 
al., 1993), it is important to examine how to effectively reduce atmospheric PM10 concentrations in 
order to decrease its adverse health effects.  

The collected PM10 data are often recorded as time series and are characterized by many large 
fluctuations with no obvious autocorrelation (Figure 1). There are two approaches to extract air 
quality information from the collected data and weather parameters. One is to build an atmospheric 
model based on the current knowledge of fundamental chemical and physical processes, and to make 
predictions accordingly. The other approach starts with the statistical analysis of the collected data in 
order to find correlations to the atmospheric environment. However, both the accuracy and reliability 
of these analyses may be influenced by our fundamental knowledge of the complex structure of PM10 
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history at each station. Previous investigations (Lee, 2002; Lee et al., 2003a, 2003b) found that the 
fractal method might be an efficient tool to characterize, analyze, and compare the temporal 
characteristics of air pollutant concentrations. For this study, the long-range dependence of PM10

concentration time series measured at Taipei was first examined with the standard time series analysis. 
Then the clustering structure of the time series and its multiscaling characteristics were analyzed by 
box-counting and multifractal scaling analysis (MSA), respectively. Finally, a simple two-scale 
Cantor set with unequal scales and weights was used to fit with the obtained multifractal spectra. The 
relationship between the fractal parameters and traditional statistical parameters (coefficients of 
variation and skewness) is discussed. Some comments on the application of the fractal approach to 
the analysis of air pollution are also discussed. 

2. Materials and methods 

2.1 Data 

In Taipei, the PM10 concentrations were measured with other air pollutants at seven monitoring 
sites of TAQMN. The PM10 sites were set up at traffic, urban, and national park locations, depending 
on their position to nearby sources. For this study, only six stations were examined because the data 
collected at the traffic station (Ta-Tung) were not enough to analyze. The selected sites were Shin-Lin, 
Chung-Shan, Wan-Hwa, Ku-Ting, and Sung-Shan (urban), and Yang-Min (national park). A previous 
investigation (Lee, 2002) found that most air pollutant concentration time series in Taiwan exhibited 
obvious annual periodicity due to systematic variations in response to seasonal and other factors, and 
that statistical characteristics could be extracted from the data collected over a year. Accordingly, a 
one-year series of hourly average values, from January to December 1998, was used in this study to 
examine the temporal characteristics of PM10. It is worth noting that although a year consists of 8,760 
hours, only about 8,400 readings for each pollutant were collected due to instrument calibration and 
maintenance. However, the missing observations seemed to be evenly distributed throughout the year. 

Diurnal and seasonal variations play a significant role in the PM10 time series. Although they could 
have a large influence on the results of fractal analysis, using the original data to analyze the cluster 
structure of these time series is preferred. The reason is that any data preprocessing may strongly 
affect the results of fractal analysis and complicate the interpretation of the results (Klement and 
Kratky, 1997). Moreover, the fractal analysis made below indicates that the effect of diurnal and 
seasonal variations on the conclusions is insignificant. In fact, factors such as time series length may 
also affect the estimation of box dimension (Buczkowski et al., 1998). Thus, further investigations are 
still needed to examine the influence of diurnal and seasonal variations and time series length on the 
results of fractal analyses. 

2.2. Standard Statistical Analysis 
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Figure 2. Box counting graphs derived from PM10 hourly average measurements at Shin-Lin station. Straight lines 

have been fitted to the sections of the graphs. 

For the PM10 time series, we first evaluated some standard statistical parameters, such as 
coefficient of variation and skewness. The long-range dependency of the time series is examined 
based on the autocorrelation spectra.  

2.3. Fractal Analysis 

The scale invariance in the data set can be detected with the aid of fractal theory. Some 
methods have been proposed to estimate the dimension of the data set, and the dimension may be 
interpreted as the degree of irregularity by which the set is distributed. One method is to 
transform the data into a set of points whose dimension is estimated by box counting (Boxian and 
Lye, 1994; Lee, 2002; Lin et al., 1999, Lovejoy et al., 1987; Olsson et al., 1992; Schertzer and 
Lovejoy, 1987). When working with time series, another common method is to construct a phase 
space portrait of the process by using the correlation dimension (Olsson et al., 1993). Recently, in 
addition to monofractal analyses, methods suitable for analyzing multiscaling properties in time 
series have been suggested, such as moment scaling analysis (Klement et al., 1994; Klement and 
Kratky, 1997; Lee, 2002; Lee et al., 2003a, 2003b; Ho et al., 2003) and probability distribution 
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multiple scaling (Lovejoy and Schertzer, 1990). In this study, both the box counting technique 
and moment scaling analysis are adopted to examine the possible scaling characteristics in the 
PM10 time series.  

In the box-counting method, the space of observation is divided into non-overlapping segments 
(boxes) of characteristic size L, and the number of boxes N(L) needed to cover the data set is counted 
(Olsson et al., 1992; Olsson et al., 1993). When applying this method to a time series, the boxes 
represent time intervals and the space of observation is equal to the total length of the series. To 
convert the pollutant concentration into countable items, another step is needed. In this study, we 
convert the values of the PM10 concentration into sets of points (indicating values above threshold, Th)
by using different Th levels. For this conversion, a zero Th means that all hours with a registered PM10

concentration in the series are considered a point. If scale invariance exists in the data set, the 
expression BDLLN )( will hold, with DB as the box dimension. From the time series one can 
generate a plot of log [N(L)] vs. log(L) and the exponents DB can be obtained from the slope of a 
linear regression to the values obtained. 

Figure 2 shows one typical result of applying the box-counting method, using different intensity 
thresholds, to the Shin-Lin monitoring stations. Some key features may be observed directly from this 
figure. The time scale L denotes a time interval within which PM10 concentration exceedances occur 
and the number of boxes N(L) is a decreasing function of L. When Th is 0, a linear relationship over 
the whole scale spectra is observed and the slope is -1. With increasing Th, the curve is composed of 
two distinctly different sections: one with a slope equal to –1 and the other with –DB. The value of L
at the intersection of these two straight lines corresponds to the critical scale, CS. When time scale is 
greater than or equal to the critical scale (CS), the PM10 concentration events exceeding the threshold 
Th must occur. On the other hand, the appearance of straight-lined sections with slope -DB in the 
log-log plots suggests the existence of scale invariance within the corresponding time scale range. 
This result indicates that the examined PM10 concentration time series can be characterized by a box 
dimension DB; i.e., display scale invariance within a specific time interval. This is not surprising since 
the presence of fluctuations in all time scales is the origin of non-trivial scale invariance.  

The temporal structure of PM10 concentration may depend on the threshold (Th); the higher Th, the 
more scattered the pattern, and the lower Th, the more clustered the PM10 events. Since the curves are 
farther down and the slopes of the curves are larger (i.e., smaller DB) as Th increases, it is concluded 
that the higher the DB the denser the time structure, and the lower the DB the sparser the time structure. 
Thus, the DB used here reveals the temporal scaling behavior of the PM10 concentration point set and 
is a measure of how the PM10 concentration clusters will fill the time axis they occupy. From the 
relationship between DB and Th, we can also obtain CS as an increasing function of Th; i.e., a larger 
time scale is needed to capture an occurrence of higher intensity. Basically, the implication of DB-Th

plots is equivalent to that of CS-Th plots. At certain Th, a sparser (denser) time structure may be 
produced with larger (smaller) CS, and both contain all information about the PM10 point-processes. 
Thus, by analyzing DB-Th and CS-Th plots, some temporal characteristics in PM10 time series can be 
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identified.
However, this approach provides information only about the global scaling properties of the PM10

concentration history. It does not take into account temporal variations of the clustering degree 
because the local fluctuations of the distribution are not described by a single fractal dimension. Thus, 
the second method employed is the recently developed multifractal scaling analysis (MSA), in which 
the variability of the distribution at different scales is connected through a dimension function instead 
of through one single dimension (Lee and Lee, 1996; Olsson et al., 1993). MSA may be used to 
investigate whether the probability distribution related to different intensity levels is characterized by 
a scaling behavior. In general, multifractal characteristics, which possess an infinite number of 
singularities of infinitely many types, are found on a fractal substrate, where “singularity” 
corresponds to a local power law behavior of the measure. However, it should be noted that it is not 
necessary to have a fractal structure to find multifractal phenomena (e.g., measures in time series). In 
addition, while this approach is able to identify fluctuations existing in distributions, it does not 
indicate where they occur. 

Detailed information about multifractal procedures can be found in Everstz and Mandelbrot (1992), 
Gutfraind et al. (1991), and Halsey et al. (1986). The essence of the multifractal formalism used in 
this analysis is as follows: First, the normalized concentration, Pini, for each hour is determined by 

,
ini

ini
ini C

CP where Cini is the PM10 concentration at time i. The series is then divided into 

nonoverlapping intervals of a certain time resolution, T. Each interval is characterized by a time 
resolution T, and the sum of normalized concentration in the interval, a probability mass function, 
Pj(T). Twelve time resolutions, from 21 to 212 hour, are considered in this study. A partition function, 
Mq(T), of order q is calculated from the Pj(T) values as      
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where n is the total number of the intervals of size T, and q is a real number ranging from -  to . For 
multifractally distributed measures, the partition function scales with the time resolution as  

,TM q
q
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where (q) is the mass exponent of order q. The mass exponent for each q-value can be obtained by 
plotting log Mq(T) vs. log T. The obtained (q) may be regarded as a characteristic function of the 
fractal behavior. If (q) versus q is a straight line, then the data set is monofractal. If, however, (q)
versus q is a convex function, then the data set is multifractal.  

An alternative and equivalent way to study the scaling properties of PM10 concentration time series 
is by considering their spectrum of singularities. It is assumed that in each interval, the mass 

probability function Pj(T) increases with the size T as Pj(T) T , then the singularity exponent  is a 
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scaling property peculiar to the interval. The index therefore, characterizes singularities of different 
strengths and is called a local fractal dimension or a singularity index. It can be determined by 
Legendre transformation of the (q) curve (Everstz and Mandelbrot, 1992) as  

).()]([ qq
dq
d                                                  (3)   

Now, corresponding to each , one can identify a scaling exponent (or a fractal dimension) f( ) if one 
assumes that the number of intervals of size T with the same NT( ), is related to the T as NT( )

T-f( ). Parameter f( ) can be calculated (Halsey et al., 1986) as  
.fqqq )()()(                                               (4) 

The shape and the extension of the f( )-curve contains significant information about the 
distribution characteristics of the examined data set. Varying q is a trick for exploring the different 
regions of . For large and positive q, we are looking for small values of ; i.e., parts of the measure 
in which the Pini values is high. For large and negative q, we study parts of the object for which the 
measure is very small and corresponds to the larger value of . On the other hand, low values of f( )
characterize a rare occurrence of isolated peaks in a data sample, and high values of f( ) characterize 
a more frequent and dense appearance of data values. In general, the spectrum has a concave 
downward curvature, with a range of -values increasing correspondingly to the increase in the 
heterogeneity of the distribution. For q = 0, we can deduce (0) = D0, where D0 is the fractal 
dimension of the support of our measure and is equal to 1.0 because we are dealing with a 
one-dimensional data support (1-D time series). This turns out to be the maximum possible value of f.
For a homogeneous distribution, the (q)-q curve becomes linear and then f = = D0; i.e., D0 is also 
the fractal dimension of all the subsets. 

2.4 Multifractal Cascade Model 

A simple generalized Cantor set with two rescaling parameters (l1 and l2) and measure parameters 
(p1 and p2) was adopted to model the multifractal spectra of PM10 concentration time series. It should 

be noted that this model with l1 = l2 =
2
1

 has been used to simulate the fully developed turbulence 

(Meneveau and Sreenivasan, 1987) and the air pollutant concentration data (Anh et al., 2000). In this 
study, however, we assume l1 + l2 = 1 (because we are dealing with a one-dimensional data support) 
and p1 + p2 = 1, respectively. The two-scale Cantor set is constructed on an interval E of unit length, 
where E0 = E, En contains 2n subintervals obtained by dividing each subinterval of En-1 into two 
different length intervals. The positive measure  on C is defined as follows. We start with the 
original region which has measure 1 and size 1 (i.e., E0 = 1 and 0 At the second stage, the unit 
mass and size are split into p1 and p2 as well as l1 and l2, respectively. This defines 1 which has p1 on
one interval (l1) and p2 on the other interval (l2). Continued in this way, the mass on each interval of En

will be divided randomly into the proportions p1 and p2 between its two subinterval in En+1.
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Accordingly, a sequence { n} can be defined, and it will converge weakly to a limiting mass 

distribution on C (Anh et al., 2000). Since for each 0  m  n, a number m
n  of the 2n intervals of 

En have mass p1
m(p2)n-m, it is apparent that the Pj(T) is generated by a multiplicative cascade with a 

binomial generator characterized by a probability p1.

In this study, the Pj(T) is assumed to be generated by such a recursive process and its scaling is 
described by equation (2). To test the validity of the multiplicative cascade model for simulating the 
PM10 concentration data, both the (q) and f( ) functions are needed. For this generalized two-scale 
Cantor set, the analytic expressions for both the -q and f-  curves have been obtained by Halsey et al. 
(1986):
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For any given q, the , , and f could be determined by eliminating 
m
n

 with the aid of the following 

equation:
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 It should be noted that because the equations (5) to (7) are highly nonlinear, the effects of l1 and p1

on both f-  and -q curves can be obtained only by solving those equations numerically. Our previous 
investigation (Lee et al., 2003b) has found that larger p1 and smaller l1 may produce more obvious 
curvature at the -q curve. Since higher non-linearity of the (q) curves is translated into a wider f( )
dispersion, then the more pronounced multifractal characteristics, p1 and l1, may be used to represent 
and compare the distribution’s heterogeneity in the examined PM10 concentration time series. The 
distribution produced from binomial process may have tails extending to the right as p1 becomes 
small. Accordingly, a smaller p1 may correspond to larger coefficient of skewness of the PM10

concentration time series. 
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Figure 3. Autocorrelation function for all examined PM10 time series. 

3. Results 

3.1. Standard Statistical Characteristics 
The standard statistical parameters estimated from the PM10 concentration time series are shown in 

Table 1. Among them, the coefficient of variation indicates the variability of PM10 concentration  
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Table 1. Basic statistical parameters and multifractal parameters for the examined PM10 time series. 

air quality 
 monitoring station 

mean/ 
g/m3

coeff. of 
variation (%)

coeff. of 
skewness

p1 l1 Range of 

Shin-Lin  43.14 63.78 1.53 0.498 0.425 0.389 
Chung-Shan  49.92 79.01 2.50 0.496 0.413 0.463 
Wan-Hwa  45.85 74.85 2.04 0.497 0.408 0.507 
Ku-Ting  43.71 70.20 1.85 0.498 0.418 0.444 

Sung-Shan  42.19 63.83 1.60 0.498 0.420 0.427 
Yang-Min 17.00 58.09 6.26 0.489 0.412 0.424 

history. The coefficient of skewness measures the relative skewness of PM10 concentration frequency 
distribution; a positive value means that the distribution has a long tail extending to the right. As 
listed in Table 1, the mean values of all examined stations (except Yang-Min) are nearly equal, 
indicating that the spatial differences in PM10 concentration in Taipei are rather small. The generating 
sources and processes of PM10 are complex and the factors influencing the temporal distribution of 
PM10 may be considerable (van der Wal and Janssen, 2000). If the controlling factors (such as 
temperature and humidity) are distributed homogeneously in the examined monitoring stations, 
however, the resulting time structure of PM10 may correspond. The right-skewness degree of 
frequency distribution of the examined stations also correspond (except Yang-Min), but the 
concentration variability increases in the order of Yang-Min < Sung-Shan = Shin-Lin < Ku-Ting < 
Wan-Hwa < Chung-Shan. On the other hand, the autocorrelation spectra given in Figure 3 indicate 
that the autocorrelation decreases slowly in a manner that is different from an exponential decay. For 
Shin-Lin, Chung-Shan, Wan-Hwa, Ku-Ting, Sung-Shan, and Yang-Min station, a correlation exists up 
to about 600, 600, 600, 100, 300, and 300 hr, respectively. This slow decay in the autocorrelation 
function indicates a temporal persistence that may be related to self-similar properties in the time 
series.

3.2. Box Dimension 

Figure 4 shows both DB-Th and CS-Th plots for all examined monitoring stations. As demonstrated 
in Figure 4(a), the plots could be roughly divided into two groups: one is made up of Shin-Lin, 
Sung-Shan, and Yang-Min, and the other includes Chung-Shan, Wan-Hwa, and Ku-Ting. Under a 
certain Th value, the DB values of Shin-Lin, Sung-Shan, and Yang-Min are larger than that of other 
monitoring stations. Above a certain Th value, we get the opposite result. At low Th (0-0.5 mean), the 
low decrease of DB-Th plot for Shin-Lin, Sung-Shan, and Yang-Min indicates that at low 
concentration, its pattern is more discrete and the persistence of occurrence is less continuous than at 
other examined monitoring stations. At high Th (>3 mean), Shin-Lin, Sung-Shan, and Yang-Min still 
possess a less dense and continuous pattern due to smaller DB and the rapid decrease of DB-Th plots at  
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Figure 4. (a) DB-Th and (b) CS-Th plots of all examined PM10 time series. 

intermediate Th (1-3 mean). Thus, during a longer (or shorter) period, the high (or low) concentration 
events occur less readily at Shin-Lin, Sung-Shan, and Yang-Min than at other examined monitoring 
stations. Therefore, it may be concluded that the data of Shin-Lin, Sung-Shan, and Yang-Min are 
more concentrated on middle concentration regions but not at low and high ranges.  

It is apparent that both DB-Th and CS-Th plots are closely related to the concentration variation of 
PM10. Thus, it is interesting to discuss the correlation between the DB-Th (CS-Th) plot and the 
coefficient of variation. As mentioned earlier, when the PM10 data has larger DB at low Th and smaller 
DB at high Th, its distribution will concentrate on middle concentration regions but not at low and high 
ranges. In this case, it will possess a smaller temporal variation; i.e., a smaller coefficient of variation. 
Therefore, Shin-Lin, Sung-Shan, and Yang-Min stations may have smaller concentration variation 
when compared with other air monitoring stations. This result is consistent with the coefficients of 
variation shown in Table 1. Although both DB-Th and CS-Th plots are closely related to the coefficient 
of variation, it is noteworthy that the former provides a much deeper insight into data structure than 
the latter because it can present a more microscopic picture about the distribution of data set. 

In addition to the relationship between DB-Th (or CS-Th) plots and the coefficient of variation, a 
closer look at the DB-Th plots and the corresponding coefficients of skewness in Table 1 reveals some 
interesting correlations. Generally, the coefficient of skewness gives a measure of the relative 
skewness of a distribution. For distributions that have tails extending to the right, the coefficient of 
skewness is positive and the distribution is called right-skewed. For a right-skewed distribution with a  
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Figure 5.a                                     Figure 5.d 

         

Figure 5.b                                     Figure 5.e 

Figure 5.c                                     Figure 5.f 

Figure 5. Qth-order moment of the normalized concentration Mq versus time scale T in a Ln-Ln scale at selected 

q-values for (a) Shin-Lin, (b) Chung-Shan, (c) Wan-Hwa, (d) Ku-Ting, (e) Sung-Shan, and (f) Yang-Min stations. 

The slope of the Ln Mq/Ln T line defines the exponent (q) (equation (2)). 
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single mode, the location of the mean is at the right side of the mode. Moreover, when the location of 
the mode moves more to the left, the larger is the coefficient of skewness. Accordingly, for a    
right-skewed distribution the DB-Th plot will show a sharp decrease when Th < 1 mean and the larger 
the decreasing rate of DB, the larger is the coefficient of skewness. As demonstrated in Figure 4(a), 
the DB-Th plots of all examined air pollutants show a pronounced decrease when Th < 1 mean, 
indicating that the distributions of all examined PM10 time series are right-skewed. As shown in Table 
1, the coefficient of skewness of Yang-Min station is the largest among the examined air monitoring 
stations, which is consistent with the decreasing rate of DB at low threshold (Th < 1 mean).  

The existence of a close relationship between the DB-Th plots and the coefficients of variation and 
skewness may provide some basis for the validity of box counting technique used in this study. This 
also indicates that box counting is a useful approach to identify the temporal and spatial variation of 
PM10 data. Because scale invariance is closely related to the long-range dependence in the data set, it 
is not adequate to treat PM10 distribution as an independent stochastic process. This also indicates that 
the Poisson distribution, which assumes that the occurrence of the event is completely random in a 
certain time interval, is not appropriate.  

Finally, it should be noted that the results of the monofractal analysis presented above show that a 
single dimension is insufficient to describe the scaling properties of the PM10 time series. It is found 
that the values of DB (or CS) decrease (or increase) as the Th magnitude increases, indicating that 
different threshold intensities reveal different properties of the PM10 time series. Thus, a 
multidimensional fractal structure may be more suitable for describing the PM10 time series, an 
assumption that must be verified by using multifractal scaling analysis (Lee, 2002, Lee et al., 2003a; 
Ho et al., 2003). 

3.3. Multifractal Scaling Analysis 

Figure 5 shows plots of the qth-order moment, Mq, versus the time scale T in a log-log scale. All of 
these plots are close to being straight for -10 q  10, signifying that the studied PM10 time series can 
be regarded as multifractal measures. The observation of multifractal scaling in PM10 time series is 
encouraging because multifractal formalism has been successfully applied to systems as complex as 
turbulence, and it may also have great potential in modeling the complex structure of PM10. Before 
this can be done, however, a physical interpretation must be made concerning which PM10 generating 
processes can lead to such multifractal characteristics. When applying a multiscaling approach to 
temporal clustering of earthquakes, multifractal characteristics are interpreted in terms of diffusive 
processes of stress in the Earth’s crust (Godano et al., 1997). Moreover, multifractal characteristics in 
rainfall data have been explained with an assumption that a large-scale flux is successively broken 
into smaller and smaller cascades, each receiving an amount of the total flux specified by a 
multiplicative parameter (Olsson, 1996). On the other hand, multifractal characteristics in the stock 
market are interpreted with the random multiplicative process of market information (Ho et al., 2004).          
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Figure 6. Fitting model to the experimental (q) curves on -10 q  10 for all examined PM10 time series. 

It should be noted that the stochastic processes proposed for such systems to generate multifractal 
characteristics are closely related to the heart of turbulence, namely, the multiplicative cascade 
process. The only difference is the characteristic physical quantity that accompanies the stochastic 
processes. For earthquakes, rainfall, the stock market, and turbulence, the corresponding 
characteristic quantity is stress, water, market information, and energy, respectively. Accordingly, the 
multifractal characteristics in PM10 time series may be interpreted with the aid of random 
multiplicative process of PM10 concentration (Lee, 2002; Lee et al., 2003b). 

Since multifractal characteristics indeed exist in all examined PM10 time series and can be viewed 
as a result of random multiplicative process, we next fit the multifractal cascade model to those 
experimental (q) curves. The values of p1 and l1 can be estimated by comparing the experimental (q)
curves with the curves computed from model for a range of values of p1 and l1. In Figure 6, we show 
a comparison between the measured (q) curve and equation (6) for all examined monitoring stations. 
The agreement is remarkable and the estimated p1 and l1 parameters are shown in Table 1. It is worth 
mentioning that if we use equal scales, (i.e., l1 = l2 = 0.5), no choice of p1 would have been 
satisfactory. Since both p1 and l1 are determined, the corresponding f( ) curves can be obtained with 
the aid of equations (7) and (8). As demonstrated in Figure 7 and Table 1, the  range, then the 
multifractal characteristics (or the distribution’s heterogeneity), increases in the order of Shin-Lin < 
Yang-Min < Sung-Shan < Ku-Ting < Chung-Shan < Wan-Hwa. 

An important question is this: What is the physical meaning of p1 and l1 and can they provide a  
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Figure 7. The plots of f vs.  for the examined PM10 time series. 

useful means for comparison and classification of some statistical characteristics in different PM10

time series? It is well known that the distribution produced from binomial process may have tails 
extending to the right as p1 becomes small. Accordingly, a smaller p1 may correspond to larger 

coefficient of skewness. As demonstrated in Table 1, when 
2
1

1l , an inverse relationship is indeed 

found between p1 and the coefficient of skewness.  
Another interesting feature is the relationship between multifractal characteristics and the 

corresponding values of p1 and l1. As mentioned earlier, larger p1 and smaller l1 may correspond to 
stronger multifractal characteristics. Accordingly, as shown in Table 1 and Figure 7, the multifractal 
property (or the distribution’s heterogeneity) of Chung-Shan, Ku-Ting, and Wan-Hwa may be more 
obvious than that of Shin-Lin, Sung-Shan, and Yang-Min. This result is similar to the results of 
Kravchenko et al. (1999), in that a significant correlation is observed between the coefficients of 
variation and the multifractal characteristics (or the range of ). However, it is noteworthy that on 
multifractal analysis, dispersion strength represents the range between the high and low PM10 values. 
On the other hand, the number of high and low concentration data are related to the left and right 
parts of the f( ) spectrum, respectively. Since the variation of data distribution is determined by both 
the data values and their corresponding number, the range of  itself is insufficient to determine the 
relative variability when comparing different data sets. This result also indicates that the multifractal 
approach provides a much deeper insight into data structure than the coefficient of variation because 



Ho et al., Aerosol and Air Quality Research, Vol. 4, No. 1, pp. 38-55, 2004 

53

it can provide a more microscopic picture about the distribution of data set. 

4. Discussion and Conclusions 

Some standard statistical methods have been used to investigate the clustering properties of PM10

time series in Taipei. The autocorrelation of all PM10 time series does not decay to zero exponentially 
but in a slower manner. Multifractal analysis indicates that the PM10 time series could be viewed as 
multifractal measures that may be the result of a random multiplicative process. A simple two-scale 
Cantor set with unequal scales and weights was then presented for the PM10 time series. This model 
fits well with the entire spectrum of scaling exponents for the examined PM10 time series. The 
validity of the fractal approach is supported by the existence of a close relationship between the 
practical implications of DB-Th plots (or l1 and p1) and the coefficient of variation and skewness.  

The results obtained from this analysis are encouraging and some practical implications can be 
addressed. First, the existence of scale-invariant properties suggests that scale shifts are 
theoretically possible. A shift from the time scales defined by the data collection systems to any 
scale needed for a particular forecasting or estimation problem would be feasible. If the 
variability or uncertainty associated with these processes could be identified, prediction based on 
scale-invariant properties may be useful. Second, multifractal analysis may be used to examine 
the relationship between the PM10 and weather data by transferring the data into useful 
multifractal parameters, namely, the l1 and p1. This may be viewed as an additional recognition 
method when using weather data as input to forecast the PM10.   

However, some important comments on the limitations of fractal analysis should also be 
addressed. First, to make the multifractal cascade model an efficient tool for characterization, 
analysis, and comparison of air pollutant concentration temporal characteristics, a clear 
relationship between the model parameters and traditional statistical quantities is needed. To do 
this, however, the connection between the multifractal parameters and traditional statistical 
properties must first be identified because mutifractal parameters are functions of model 
parameters. Yet comparing the multifractal cascade model with the use of only the coefficients of 
variation and skewness may be unfair because statistical analysis of the PM10 data collected at 
each air quality monitoring station routinely reveals a high variation of concentration, 
right-skewed frequency distribution, and long-term memory. A more appropriate approach would 
be to compare it with the use of the aforementioned three characteristics of PM10 data. As shown 
in Figure 2, the long-range dependence does exist in the examined PM10 time series. It is found, 
however, that the relationship between the model parameters and the long-range dependence in 
the examined PM10 data is difficult to identify. To make the multifractal approach an efficient tool 
for analysis of air pollutant concentration data, it may be an important task in the future to reach a 
more concise conclusion for the connection between the model parameters and the long-range 
dependence of data set. 
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Finally, although the two-scale Cantor set performed here can be regarded as a convenient model 
for PM10 distribution in time, it is difficult to conclude that the PM10 distribution is governed exactly 
by a single two-scale Cantor set with p1 and l1 as parameters, especially if one is interested in 
modeling correctly the scaling properties of PM10 time series. Still, the two-scale Cantor set is merely 
one of the possible forms to generate multiplicative cascades. To achieve more confidence when we 
adopt the multifractal cascade model to simulate and predict the air pollutant concentration data, a 
further comparison among the different multiplicative cascade models is still needed to identify which 
one is the best. 
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