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Apparent Viscosity of a Monodispersed Liquid Aerosol

1. Introduction

Shih Hsin Chen*, Jun Jay Lee and Chi Yia Maa

Department of Chemical Engineering,
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This work presents an analytical study of the effective viscosity of a mono-dispersion of liquid
acrosol droplets in a gas medium based on a steady-state low-Reynolds number hydrodynamics.
The Knudsen and Reynolds numbers are assumed to be small, and thus fluid flows inside and
outside the fluid particle can be described using a continuum model with a hydrodynamic slip at
the drop-gas interface, while the flow fields are governed by the Stokes equations. Three types
of cell models are employed to solve the problem, namely the Simha, Happel and Kuwabara cell
models. Regarding the limitations of this study, the analytical expressions of apparent viscosity
as functions of the particle volume fraction in a closed form agree with the literature. The bulk
viscosity is significantly influenced by the surface properties of the droplet-gas interface and by
the internal-to-external viscosity ratio of the droplet. Generally, the influence of the
concentration effect of the particles on the apparent viscosity increases with the volume fraction of
the dispersed liquid drops.

Key Words: Aerosol, emulsion, liquid droplet, effective viscosity, unit cell model

the

macroscopic particles involved in many industrial

viscosity are important not only for

The hydrodynamic investigation of particle
motion in Newtonian fluids at small Reynolds
numbers is significant in various suspension and
aerosol problems. Suspension settling velocities,
efficiencies of spray scrubber devices for removing
the

agglomeration rates of aerosol particles in the

particulates  from  gas streams, and

atmosphere all depend on the nature of the relative
These
suspensions  often have complicated rheology

motion of the suspended particles.
properties that differ significantly from those of the
suspending fluid, even for a small volume fraction

| of suspended particles. Studies of suspension

i
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separation and reaction processes, but also in
connection with the very small particles commonly
known as colloidal, with sizes approachiﬁg the
molecular dimension of the suspension fluid
The that

characterize sedimentation rates also characterize

medium. same basic variables
suspension viscosity, namely: (1) nature of the fluid;
(2) nature of the suspended particles; (3) particle
concentration; (4) particle and fluid motion- with
the shearing field of the latter being the prime
distinguishing characteristic. Because of the small
size of the particles involved in viscosity problems,
other properties, such as internal flexibility and ease
of deformation, may also be important.

The theoretical study of the .effective viscosity of
suspensions originated from the classic work of

Einstein (1906) on dilute situations. Einstein’s
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formula is generally accepted in the application of
extremely dilute dispersions, and thus is said to be
accurate to the first order in the volume fraction ¢
of the solid spheres. For a slightly concentrated
suspension, the correction terms for ¢’ should
have been involved by considering the
particle-interactions (Happel and Brenner, 1983).
Summarizing the hydrodynamic interactions of the
two-sphere system in a linear flow field, Batchelor
and Green (1972) provided the apparent viscosity to
the second order of volume fraction of the solid
Batchelor and

Green obtained their analytical result by combining

particles in a colloidal suspension.

two asymptotic analyses, namely the reflection and
Yoon and Kim (1987)
subsequently conducted a similar investigation that
These

investigations first determined the microscopic

lubrication theory methods.

applied a boundary collocation method.

model of particle interactions in a dilute dispersion
employing both statistical and low Reynolds
number hydrodynamic concepts and then obtained
the macroscopic ensemble-averaged results. In
applying the same mathematic formulation, the
parallel problem involving suspensions of
immiscible fluid droplets was recently extended by
Keh and Chen (2000),

summarizes the current state of knowledge in this

whose study also
area and provides some informative references.

One particularly interesting novel perspective on
hydrodynamic treatment, the unit cell model
(Simha, 1952; Happel, 1957; Kuwabara, 1959)
provides a simpler means of determining the
effective viscosity of a mono-dispersed suspension.
Based on a homogeneous-environment, the cell
models simplify the mono-dispersed colloidal
system into a concentric spherical unit cell
enclosing a representative particle at its center.
Each cell contains suspending fluid in proportion to
the fluid-to-solid volume of the suspension, and
thus the complicated boundary-value problem for
reduced to the

multiple spheres can be

consideration of a dilational flow within a cell.

Results for the effective viscosity of suspensions o
rigid spheres from the cell model were found to b
within the range of established experimental dat:
(Simha, 1952; Happel, 1957, 1958).
the Navier-Stokes

problems, there is generally assumed to be nc

To solve hydrodynamic
slippage at the solid-fluid and/or the fluid-fluic
interfaces. However, this assumption does nof
accurately reflect the actual transport processes. i
has been both experimentally and theoretically
confirmed that the adjacent fluid (especially if it is
a rarified gés) can cross solid and liquid surfaces
(Kennard, 1938; Fulford et al., 1971; Davis, 1972;
Beresnev and Chernyak, 1986; Loyalka, 1990;
Ying and Peters, 1991; Hutchins et al., 1995; Li and
1995; Grashchenkov, 1996).

particles also have slippery surfaces.

Davis, Airborne
Presumably,
any slippage would be proportional to the local
velocity gradient next to the particle surface (Basset,
1961; Happel and Brenner, 1983), at least as long
as this gradient is small. Theoretical
hydrodynamic investigations concerning aerosol
suspensions of solid particles and/or liquid drops
have attracted less attention than Stokes particles
and are more difficult to formulate than Stokes
particles because the particles (either solid spheres
or fluid droplets) are slippery and an additional
flow field inside the particle must be solved to
allow the suspended particles to be considered
droplets. Recent investigations of the averaged
sedimenting velocity of mono-dispersed aerosol
systems have used a cell model for solid particles
(Chen et al., 1999) and liquid drops (Chen and
Yang, 2000).

This study focuses on the bulk rheological
properties of a suspension of particles in a
Newtonian fluid of uniform viscosity.  The
following assumptions ‘are made: (1) that the
Reynolds number of the relative motion of the fluid
near a particle is small compared with 1 and that the
Stokes equations describe the fluid motion; (2) that

the inertia of a moving particle may be ignored, and
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(3) that no external force or couple acts on a
particle. These conditions are usually realized in
practice by the smallness of the particles involved.
It is also assumed that hydrodynamic stresses only
influences movement on the particle surface. The
analysis ignores the effects of the Brownian motion
of particles. Finally, the particles are assumed to
be spherical, and of uniform size. (In principles,
the calculation is also applicable to non-spherical
particles, but the working becomes more complex.)
The general analysis supposes the material of the
particles to be a Newtonian fluid of viscosity 7,;
the case of rigid particles is then obtained by taking
the limit 7,/n7 — o, while for gas bubbles in
liquid we put #7,/p=0. A unit cell model
(Happel, 1957; Kuwabara, 1959; Zydney, 1995) is
applied to predict the viscosity of a suspension of
identical spherical droplets. The flow disturbance
arising from each droplet is considered to be
confined to the cell of fluid surrounding it, which is
The closed

form analytical solutions obtained with this model

in turn bounded by virtual envelope.

enable apparent viscosity to be predicted as a
function of the volume fraction of the droplets in a
wide range. In special cases, our results agree
closely with the calculations available in the

literature.
2. Analysis

This section considers the effective viscosity of a
homogeneoﬁs gaseous suspension of identical
liquid drops with viscosity 7 subjected to a
deforming motion. The droplets retain their shape
with radius a owing to relatively high interfacial
tension, and the viscosity of the drops is 7,. The
effect
potentials between the particles is not considered.
Additionally,

quasi-steady

of attractive or repulsive interaction

no coalescence occurred in the
though

coalescence is typical in a concentrated suspension.

mono-dispersion such

The Reynolds numbers inside and outside the drops

and the Knudsen number are both assumed to be
small, and so the fluid flows are described by the
Stokes equations. The formulation presented here
is analogous to those developed by Simha (1952),
Happel (1957), and Kuwabara (1959). This
investigation takes a unit cell model in which each
particle is envisaged to be surrounded by a
concentric spherical shell of ambient fluid with an
outer radius b such that the cell contains the same
volumetric proportion of particles as does the entire
suspension (namely, the volume fraction of the
particles @ =a’/b’). On the outer boundary of
the imaginary spherical shell, the Simha model
assumes that the fluid velocity is equal to the bulk
velocity, the Happel model assumes that the radial
velocity and the shear stress are equal to the bulk
flow, while the Kuwabara model assumes that the
radial velocity and the tangential vorticity are the
same as those of the bulk flow. The definition of
relative viscosity used in the above models is based
on the ratio of dissipation of energy per unit volume
of suspension to that of the suspending fluid alone.
When the cell contains no suspended fluid sphere,
the flow field is assumed to comprise a simple
shearing motion with a constant velocity gradient
2x in the zx plane, where (x,y,z) are the
rectangular coordinates.  Since only spherical
particles are considered, the rotational part of the
field is not disturbed by the presence of a sphere at
the origin of the coordinate system. Thus, the

bulk velocity can be expressed as

v, =Kk(ze, +xe,), (D)

where e, and e, denote the unit vectors in the x
and z directions, respectively.

In spherical coordinates ( »,0,¢4 ), one can
employ Lamb’s general solution (Happel and
1983) of the Stokes
determine the velocity fields for the flow inside the

Brenner, equations to
fluid sphere v,(x) and for the external flow v(x),

respectively, and also to determine the
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corresponding pressure distributions p,(x) and

p(x). The solution takes the form

v, = k(r +6Cr +2Dr +6Er™ —3Fr*)sin26 cosg , (2a)
vy =2k(3r+5Cr’ + Dr + Fr™)cos 20 cos ¢, (2b)

v, ==2k($r+5Cr’ + Dr+ Fr™*)cos@sing, (2c)

p =kn(42Cr* +12Er~*)sin 260 cos ¢, (2d)
for a<r<b,and

v, =k(6C,r* +2D,r)sin26 cos ¢, (3a)
Vg =2k(5C,r* + D.r)cos20cosg, (3b)
vy = —2x(5C,r* + D,r)cosBsing, (3¢)
p, = 277 +xn(42C.r*)sin 20 cos ¢, (3d)

for 0<r<a. Here, y denotes the interfacial
tension for the fluid sphere, and the coefficients C,
D, E, F, Cj, and D; are determined from the
boundary conditions at surfaces r=a and r=5h.
Since the fluid sphere is assumed to remain
spherical, the capillary number xna/y must be
sufficiently small for the sphericity and the solution
and (3)
Young-Laplace equation (Hunter, 1986) for the

given by Egs. (2) satisfies the
normal stresses at the particle surface.

Considering the discontinuity of the tangential
velocity between the internal and external fluids,
which is proportional to the tangential shear stress,
as well as the continuity of the tangential shear
stress, the boundary conditions for the velocity
fields at the particle surface are

(4a)

(4b)

ol

(I-ee) (v-v)=—"""(I-ee e, :t, (40)

(I-e.e e :(1-1,)=0, (4d)
where (e,,e,,e,) denote the unit vectors in the
spherical coordinates, I represents the unit dyadic,
! is the mean free path of the surrounding fluid,
and t (= Vv+H(Vv)"]) and 7, (=n{ Vv, +(V¥,)7)
denote the deviatoric stress tensors for the external
and internal flows, respectively. For boundary
condition (4c), C, represents the dimensionless
frictional slip coefficient, which is semi-empirically
related to the
coefficient « at the particle-gas interface by
C,=(2-a)/a (Kennard, 1938). Although C,
clearly depends upon the surface characteristic,

momentum  accommodation

examination of the theoretical and experimental
data suggests it will range between 1.0-1.5 (Davis,
1972; Talbot et al., 1980; Loyalka, 1990; Takata
1995).
solutions (2) and (3) into boundary conditions (4)

and Sone, Substituting the general

produces four linear algebraic relative formulas

6Ca* +2D+6Ea™ —=3Fa™ = -1, (5a)
3C,a’+D, =0, (5b)
-2(5-16C,)Ca’ ~2(1-2C.)D +

12C, Ea™ - 2(1+8C, )Fa™

+10C,a* +2D,=1-2C,, (5¢)
16Ca° +2D +6Ea™ —8Fa™ —

. . : (5d)
167 Ca®-2n'D, = -1
where
C,=C,Kn, (62)
n =", (6b)
n

with Kn=1/a, the Knudsen number of the aeroscl
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suspension. To determine the six unknowns C, D,
E, F, C; and Dy, the other two relations must first be
formulated, namely the relations resulting from the
boundar\y conditions at the surface of the cell wall
(r=b). |

The energy dissipated per unit time within a cell
may be calculated using the surface integral

(Happel and Brenner, 1983)

O=[n-c vdS=4x"V,7,, (7)

where 6 =-pl+1, V,(=%4mb’) is the volume of

a unit cell and 4x’V.n is the energy dissipation
for the unperturbed flow in the cell.  The
integration in Eq. (7) needs to be extended over
both the outer surface (#=b) and inner surface (r=a).
Evaluation of the integral by using Eq. (3) yields
the following expression for the effective viscosity
of the suspension

1, =nl+¢p), ®)

where

(o= %(42Cb2 +10D -3Eb™?)

- %(301;2 -2D +18Eb™ —12Fb™%)

x(6Cb* + 2D +6Eb™ —3Fb™)

+15%(8Cb2 +D+3Eb™ —4Fb~*)(5Cb*> + D+ Fb™)
+24n o(C,a*)?

+%77*(p(27C,.a2 +5D,)(3C,a* +D,). ®

Notably, Egs. (8) and (9) are the most general
formulas, which satisfy all kinds of cell models in
discussing  the

apparent  viscosity of a

mono-dispersion of colloidal particles.

Simha-Type Cell Model
Employing the Simha model for the boundary
conditions on the outer (virtual) envelope of the cell

produces

r=b v-v_=0. (10)
Substituting the general solution (3) into boundary
condition (10) then produces two linear algebraic
relative formulas

6Cb* +2D+6Eb™ —-3Fb™ =0, (11a)

5Cb> +D+Fb™ =0. (11b)
Thus, the unknowns C, D, E, F, C; and D; can be
formulated by Egs. (5) and (11).
straightforward and produces

The procedure is

C =—5—£7[(2+577‘ +107°C,)e*"? —577'(07’3], (12a)
a

s

ool [5(2+sn'+1on'c;)(p—

. * * ¥ ’(12b)
26, 217°'9’"* +4(1—1 +57°C,)e""

& |(2+57 +109°C,)
=T * * 4 (120)
36, [ +5(1-1"+57'C)p""
5
F=_2; [77 + -0 +50°Cy0"], (12d)
1
C.=——Q2-70""+50""), 12¢
ey 5s( @ ®) (12¢)
D, = —i(2—7(p5” +5¢7"), (126)

Yy

where

8, =4(1+7n" +57°C.)-5Q2+5n" +10n°C. Yo + 427" 9"
+5(2-57" +107°C, )" —4(1-1" +51°C,)p""  (13)

Applying the relatives (5) and (11), Eq. (9)

reduces to

£,0=21Cbh* +5D +24n"p(C,a”)*. (14)
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Combining Egs. (12) and (14) produces

2 . . * Ly
g :K[(2+577 +107°C.)+51-n" + 57 Cm)(ﬂm]

+(;’7 (2-7¢" +50"" ). (15)

2

s

When C, =0, the above equation reduces to the
result obtained by Keh and Chen (2000) for a
suspension of identical liquid droplets, and this
result can be further simplified to the Simha’s result
(1957) for a monodispersion of no-slip solid
On the other hand,

since n° — o, Eq. (15) condenses to describe the

particles by setting 1" — .

behavior of a mono-dispersed solid aerosol, in
which a tangential slip velocity occurs at the
gas-solid interfaces.

Happel-Type Cell Model
When the Happel cell model for the boundary
conditions on the outer envelope of the cell is

applied, Eq. (10) is replaced by

r=b e (v-v_)=0, (16a)
(I-ee. e :(t—-1_)=0, (16b)
where 1, (=7{(Vv,)+(Vv_)"]) is the deviatoric
stress tensor for the undisturbed flow. Following
this change, the two linear algebraic relative

formulas are Eq. (11a) and
8Ch”> + D+3Eb™ —4Fb™ =0. (17)

Additionally, the coefficients in Egs. (2) and (3) are

ne’", (18a)

bl (2457 +109°C,)p —

, 18b
26,200-7"+57°C.)p"" " (185)

a | 2+57 +10n°C.)~
S o , (18¢)
65, [ 2(1-n" +57°C,)p""
a5
F=-—"1p", 18d
5h77 (184d)
C,~=-—1 (1-¢7"%), (18¢)
2a%3,
_ 3 7/3
D, =-——(1-9™"), (189

! 26,
where

5, =2(+n" +57"C,)—(2+57" +109°C. )¢
-(2-57"+107°C.)p""* +

G Ce 19
2(1-7 +57°C,)p""

Applying Egs. (5) and (17) allows Eq. (9) to be
re-fomléllated as
$,p ==(42Cb* +11D) + 241 o(C,a*)’. (20)
Substituting Eq. (18) into Eq. (20) produces

1 |11(2+57 +105°C, ) - 4257 9* "
56, -22(1-77" +517'C,)p" "

h

6
+ éf:z (1-p7Y. Q1)

In this model, the result of the effective viscosity
(by setting C. =0) is consistent with the formula
of a mono-dispersion of fluid spheres (Keh and
Chen, 2000).
Eq. (21) with C, =0 and 1" — o agrees with
the work of Happel (1957).

Meanwhile, the simplified case of

Kuwabara-Type Cell Model
When the Kuwabara cell model is used as the
outer boundary of the cell, Eq. (16b) becomes

r=>b (I-ee,)-Vx(v-v,)=0.  (22)
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Thus, the two corresponding formulas according to
the boundary conditions at the cell surface are Eq.
(11a) and

7Ch> —3Eb™ =0. (23)

Following the above change, the coefficients in Eqs.

(2) and (3) can be obtained as

C=- 2+57" +10n°C.)p°", (24a)

5

k

102 +57" +100"C))p - 21n"¢*"°
po L (10 77 *n*m)rp T\ 2ab)
46, |-6(1-n +57°C,)p""’

7a* . . %
E=- 2+4+5n +10n C ), 24c¢
125k( n n C,) (24¢)
5
Cl * * * * 5/3
F=———[Tn +2(0-n +5n C, )¢ "],  (24d)
26,
C, = 1-9™), 24e
, 46125/{( o) (24¢)
21
D, =-——(1-¢"), 24
; 45/\'( ) (241)
where

5, =70+n" +50°C.)-52+5n" +10n"C,)p
+217°0° +3(1-n" +517°C. )p"". (25)

Evaluation of the integral in Eq. (7) by using Eqs.

(5), (17a), and Eq. (23) again produces the apparent

viscosity

0 =14Ch° +4D + E(15Cb2 +D—4Fb°)
5 . (26)

(5CH* + D+ Fb )+ 247" p(Cia’ )

Substituting Eq. (24) into Eq. (26) produces

k

1 [13Q2+57 +107°C) - 4209
20, | -12(0-n" +57°C,)e" "’

15 [@+57" +100°Cy-T70?* T
46, | -2(1-n" +57'C,)p’"?
147" IR
+ 1- .

g

27)

In this model, the result of the apparent viscosity
(by setting C. =0) is consistent with the formula
of a mono-dispersion of fluid spheres (Keh and
Chen, 2000). When C, =0 and 1" -, Eq.
(27) agrees with the original article by Kuwabara
(1959) describing the problem of apparent viscosity

in a mono-dispersion of no-slip solid particles.
3. Results and Discussion

Tables 1 and 2 list the relative viscosity results
n./n of a suspension of identical aerosol droplets
for C. =0.01 and 7 =100, respectively, obtained
from the Simha, Happel and Kuwabara cell models
in the previous section. The volume fractions of
the suspended particles are considered for situations
ranging from extremely dilute (¢ — 0) to very
Although the situations

listed in Table 1 for an internal-to-external viscosity

concentrated (¢ =0.6).

ratio of 0, 0.1 and even 1 almost never exist in
actual aerosol suspensions, these data provide a
good comparative reference and can also be applied
to discuss a dispersed problem of hydrosol owing to
our general formulation. Assuming the limiting
values of C; =0 and 77* — o0, the calculations
made herein using the three models agree with
those presented in the classic works by Simha
(1952), Happel (1957) and Kuwabara (1959). The
appendix lists some limiting cases of the effective
viscosity simplified by the three cell models.

Tables 1 and 2 clearly indicate the relative
viscosity of the system increases monotonically
with increasing particle volume fraction regardless
of the physical properties specified. For a dilute
aerosol dispersion (say, @ <0.2), the relative
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Table 1.  The relative viscosity 7,/n for an aerosol suspension of identical liquid drops as a function of
the volume fraction ¢ of the droplets with C, = 0.01.
. .11
Ui 4 Simha Model Happel model Kuwabara model
0 0 1.0000 1.0000 1.0000
0.1 . 1.1329 1.2444 1.1749
0.2 1.3823 1.5500 1.3991
0.3 1.9023 1.9429 1.6934
0.4 3.0919 2.4667 2.0921
0.5 6.0938 3.2000 2.6571
0.6 14.7236 4.3000 3.5120
0.1 0 1.0000 1.0000 1.0000
0.1 1.1734 1.2881 1.2105
0.2 1.5019 1.6522 1.4904
0.3 2.1662 2.1334 1.8738
0.4 3.6186 2.8021 24216
0.5 7.1203 3.7932 3.2527
0.6 16.7382 5.4027 4.6316
1 0 1.0000 1.0000 1.0000
0.1 1.3287 1.4571 1.3329
0.2 2.0265 2.0788 1.8462
0.3 3.4597 3.0001 2.6623
0.4 6.4663 4.4707 4.0245
0.5 13.1800 7.0246 6.4592
0.6 29.9586 11.9773 11.2688
10 0 1.0000 1.0000 1.0000
0.1 1.4123 1.5695 1.3743
0.2 2.3891 2.3862 2.0119
0.3 4.5872 3.7030 3.1449
0.4 9.5758 6.0494 5.2960
0.5 21.4737 10.7138 9.7539
0.6 52.7178 21.3363 20.1767
0 0 1.0000 1.0000 1.0000
0.1 1.4175 1.5850 1.3693
0.2 2.4079 2.4244 2.0007
0.3 4.6600 3.7829 3.1282
0.4 9.8294 6.2203 5.2887
0.5 22.3463 11.1231 9.8362
0.6 55.8963 22.5124 20.7336

viscosity predicted by Happel cell model generally
exceeds that predicted by the other two models.
However, the Simha cell model replaces this
primacy of Happel cell as the particle concentration
increases. In a concentrated mono-dispersed
aerosol, the Simha cell model results in markedly
higher apparent viscosity than the Happel and
Kuwabara cells, while the differences in relative
viscosity between the Kuwabara and Happel cell
models are fairly small. Generally, the apparent

viscosity predicted by the Kuwabara cell model is

always smaller than that predicted by the Simha
and Happel cell models, meaning that the energy
dissipation in the particle motion with the
Kuwabara cell model is less than with the other two
models. Given a constant particle concentration,
the relative viscosity of the aerosol suspension
increases with increasing 7" and/or decreasing
c

m>

which explain why the energy dissipation
during motion of the aerosol suspension increases
with increasing droplet viscosity or decreasing

slippage on the particle surface.
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Table 2. The relative viscosity 7,/n for an aerosol suspension of identical liquid drops as a function of
the volume fraction ¢ of the droplets with 7" =100.

. ./1
C, P Simha Model Happel model Kuwabara model
0 0 1.0000 1.0000 1.0000
0.1 1.4345 1.6034 1.3791
0.2 2.4945 2.4822 2.0401
0.3 4.9547 3.9336 3.2479
0.4 10.7459 6.6076 5.6282
0.5 25.2099 12.1768 10.8206
0.6 65.5982 25.7458 23.8774
0.1 0 1.0000 1.0000 1.0000
0.1 1.3141 1.4708 1.3140
02 1.9843 2.0976 1.7952
0.3 3.3748 3.0152 2.5591
0.4 6.3256 44718 3.8409
0.5 12.9876 7.0035 6.1580
0.6 29.7964 - 11.9462 10.8125
1 0 1.0000 1.0000 1.0000
0.1 1.1724 1.2968 1.2101
0.2 1.4997 " 1.6662 1.4876
0.3 2.1625 2.1510 1.8664
04 3.6135 2.8220 2.4069
0.5 7.1141 3.8147 3.2271
0.6 16.7776 5.4256 4.5898
10 0 1.0000 1.0000 1.0000
0.1 1.1374 1.2505 1.1790
0.2 1.3952 1.5631 1.4092
0.3 1.9305 1.9658 1.7126
0.4 3.1475 2.5052 2.1263
0.5 6.2010 3.2655 2.7179
0.6 14.9367 44181 3.6252
© 0 1.0000 1.0000 1.0000
0.1 1.1329 1.2444 1.1749
0.2 1.3823 1.5500 1.3991
0.3 1.9023 1.9429 1.6934
0.4 3.0919 2.4667 2.0921
0.5 6.0938 3.2000 2.6571
0.6 14.7236 4.3000 3.5120
Taking Taylor expansion about ¢ =0 , the [n] _ 1+[1 12+ 571: +107*1'C5;) . ‘31‘1* — ](p
apparent viscosity can be represented in the form of N/ 10(+n°+5m C,) 2140 +3n C,)
2171‘ 5/3

an increasing power series of @'’ as _—
gPp ¢ 5+m +5n Cm)(p

112+57" +107°C)* 3n"(2+57" +107°C,,)
n 2457 +109°C,, 3’ + ( - 7 2 T ! C LPSIN) 0’ (28b)
Te ) 214 L/ B W— 200+ +57°C,) T 247 +57°C,)
nJ, 20+ +57°C) 2(0+n +571C,) 2177'(2+577'+1077'C')
8/3 3
* * * 2 " * * " - » * * = ¢ +O(¢7 )
. 5(2+577* +107] ?mz) +1577 (2+§77 +1*07Z ?m) ¢,2(28a) 10(1+7° +57 Cm)z
81+n +5nC,) 41+7n7 +571°C,)
1057 (7" +27°CL) 635" ,
+\74(| w1 +57°C) B 2A1+n" + 5,7‘C’:’)3:\(p8 "+0(g") for the Happel cell model, and

for the Simha cell model,
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Fig. 1a
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Fig. 1b
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LogC,"
Fig. 1. Plots of the relative viscosity 77,/7 for a
mono-dispersed aerosol of liquid drops as a function of C ;
with the volume fraction ¢ as a parameter : solid line for

77' =100 and dash line for 77‘ =10.

132+ 57" +107°C")
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2

_ 157 7/3
41+n +57'C.)

2

Fig. 1c
Kuwabara M odel
* B Log C,’' ’
157'(12+23n" +46n°C,) R
14(1+7n" +57°C, ) o
9" _1957"(2+ 57" +107°C,)’
(+n"+57°C.) 98(1+n +57'C.)
+0(p’) (28¢)

for the Kuwabara cell model. The above result
shows that the first three leading orders of the effect
of particle concentration on the aerosol viscosity
are (p,p°,9%?) for Simha cell and (p,0°",0?)
for Happel cell and Kuwabara cell, respectively.
For a dilute or moderately concentrated aerosol
comprising identical particles, Eq. (28) accurately
predicts the apparent system viscosity.

In Figures 1 and 2, the relative viscosity of a
mono-dispersed aerosol is plotted as a function of
C. and 7", respectively, for the Simha, Happel
and Kuwabara cell models. These figures verifies
that the existence of particles will make the bulk
viscosity of the suspension stickier than the
surrounding medium, regardless of the droplet
This
with

increasing volume fraction of suspended particles.

viscosity and/or the surface slippage.

viscosity-increase  becomes  significant
Again, the effective viscosity of the aerosol system
decreases with increasing slip coefficient and
Knudsen number, meaning less energy is consumed
in the suspension flow. However, the bulk
viscosity of the mono-dispersed aerosol is a weak

function of C; when C; >10; that is, when
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0 T T

Fig. 2a.

Simha Model

n/n

kil T T

Happel Model

n./m

Logn’

Fig.2. Plots of the relative viscosity T. m for a
mono-dispersed aerosol of liquid drops as a function of n
as a parameter - solid line for

C; =0.01 and dash line for C; =0.1,

with the volume fraction

C, >10 | the changes of C, will only slightly
influence the apparent viscosity. Meanwhile, bulk
viscosity increases with increasing droplet viscosity,
as displayed in Fig. 2. The increase of the
viscosity affects the shear stress at the droplet-gas
interface and thus causes the phenomenon of the
increased energy expenditure in transport.

An analogous phenomenon to the physical property
of C . the apparent viscosity of liquid aerosol is a
weak function of 77 because n <0.1, Figures
1 and 2 reveal that changes in C, andlor 7
significantly influence effective viscosity in
concentrated suspensions, while in dilute aerosols
the effective viscosity is a weak function of C,

and 7 . 1In general, the tendency of the bulk

Fig. 2b.

30 T T

Fig. 2c.

Kuwabara Model

n/Mm

viscosity influenced by the physical properties (C;
and 77‘) and volume fraction of the droplets is
similar for the three cell models, though their
numerical evaluations do not all agree.

Figures 3 and 4 illustrate the plots of effective
viscosity as a function of C, and 7 for given a
constant volume fraction of the droplet (? = 0.6),
Interestingly, the apparent viscosity evaluated by
the three cell models is not influenced by variations
in 7 when C,>10 or by variations in C,
when 7 <0.01

does not mean that predictions of bulk viscosity

However, this phenomenon

with the three cell models have the same limitations.
These limited bulk viscosities are 14.7, 4.3 and 3.5
for the Simha, Happel and Kuwabara cell models,
respectively. ~ From  the  perspective  of
hydrodynamics, these limitations are identical to
those for a mono-dispersion of gas bubbles in a
liquid medium, though they are not applicable to
aerosol samples.

Conversely, the apparent

viscosity is a sensitive function of 7" when C
is small, and a sensitive function of C, when 7
is large. In the concentrated aerosol illustrated in
Figs. 3 and 4, the Simha cell again reveals much
higher energy dissipation in the hydrodynamic
motion of the particle relative to the surrounding
gas than the other models do, resulting in higher

aerosol viscosity.

4. Conclusion
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70 T T

Fig. 3a.

Simha M odel
¢=0.6

680

40

n/M

30

20

30 T T

Fig. 3b.
Happel Model
¢=0.6 T

Log C,~

Fig. 3.Plots of the relative viscosity M./M  for a
mono-dispersed aerosol of liquid drops as a function of C,

with N asa parameter (P = 0.6).

This study analytically formulates the effective
viscosity of a mono-dispersed aerosol of liquid
droplets by using three types of cell models:

(a) Simha cell model, (b) Happel cell model and (c)
Kuwabara cell model. Increased droplet viscosity
and/or decreased slippage feature at the droplet-gas
interface are both demonstrated to increase the
apparent viscosity of the mono-dispersed aerosol,

implying a corresponding increase in energy
dissipation during aerosol transport. Although the
discussions in the previous section focus on the

liquid aerosol suspension, the general results of

30 T T

Fig. 3c.
Kuwabara M odel

¢=0.6

n/n

Log C,~

Egs. (15), (21) and (27) can be simplified to some
classic investigations of the effective viscosity of
colloidal systems, such as no-slip solid particles in
a fluid medium (gas or liquid), solid aerosol
particles in the gas phase, gas bubbles in the liquid
phase, macro-molecule suspension, and so on.
Notably the cell model can be viewed as an art
methodology. Researchers who use experimental
studies can always find suitable cell models to
predict their data, at least in some specified
concentrations they treated. Consequently, it is
extremely difficult to determine which cell model is
better. This work merely presents a
pre-experimental theoretical study to those who are
interested.
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Appendix
Some Limiting Cases of on Effective Viscosity in

the Simha-Type Cell Model
Case I: Monodispersion of Liquid Drops (Cn =0y
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Fig. 4. Plots of the relative viscosity 77, /n for a
mono-dispersed aerosol of liquid drops as a function of 77*

with C:, as a parameter (@ = 0.6).
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Case II: Monodispersion of Solid Aerosol Spheres
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Case III: Monodispersion of No-slip Solid Particles
(C,=0, " >o)

¢ =20-p)

r (A3a)
5, =4-25p+429°" -25¢"" +49"" (A3b)
Case IV: Monodispersion of Gas Bubbles
(C.=0",7"=0or C, >, 77 >®)

1 7/3
< =5—(2+5¢ ) (Ada)
S =2-5p+5¢"" —2¢"" (A4db)

Some Limiting cases of Effective Viscosity in the
Happel-Type Cell Model
Case I: Monodispersion of Liquid Drops (C,, = 0)

l * * *
Z, =§[11(2+577 Y4270 —22(1- 1)
h

*

6
+_;77(1 _¢7/3)2

(ASa)
5, =201+n)-2+57)p-(Q2-57)p "

+2(1-1")g"" (A5b)
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Case 1I: Monodispersion of Solid Aerosol Spheres
(7" — o)

él,:g%)r[551+2C) 4207 +22(1-5C.)p"? ] (Aba)

h

m

5, =2(1+5C,)-5(1+2C,)p

+5(1-2C )" =2(1-5C,)""

m

(A6b)

Case III: Monodispersion of No-slip Solid Particles
(C =0, n° >o)

, =%(55—42¢” +2207"7) (A7a)

h

5, =2-5p+5¢"" —2¢"" (A7b)
Case IV: Monodispersion of Gas Bubbles (C ; =0,

n"=0or C. 5w, n >w)

£, =—15i(1—¢7’-‘> (AS2)

N

5/1 :1_¢_¢7/3 +(0|0/3 (Agb)

Some Limiting cases of Effective Viscosity in the
Kuwabara-Type Cell Model
Case I: Monodispersion of Liquid Drops (C - =0)

¢ =

15 .
> @ +sn) =170 =201

k

; 132+ 577) - 42" 9> —1201- 19""]

,‘v

1470 RS ,

265 ( 4 ) (A52)
5, =7(1+7)=52+57)p+21n ¢*"
+3(1-7")p"" (A9b)

Case II: Monodispersion of Solid Aerosol Spheres
(n" > )

¢ = 215 [65(1+ 207 — 420* +1201-5C} ™"

"
I

1 , .
- B arac)-707 +20-5¢,)0"F  (Al02)
k
5, =7(1+5C.)-25(1+2C,)p+21p°"
-3(1-5C.)p"" (A10b)

Case I1I: Monodispersion of No-slip Solid Particles
(C, =0, n" >w)

¢ = (65— 420" +1297")
452@‘ 70?" +20"") (Alla)
5, =7-25¢+21p°" =3p"" (Allb)

Case IV: Monodispersion of Gas Bubbles (C,, =0,
n =0 or C, >0, n —>o)

¢, =?;-17(13——6¢7’3)—2T::-(1—¢7/3)2 (A12a)

5, =7-10p+3¢p"" (A12b)

Nomenclature

a radius of a fluid sphere (m)

b radius of a unit cell (m)

C,D,EF,C;,Dj coefficients defined by
Equation (8)

C, frictional slip coefficient

c (=C.1la)

€,,€,,€, unit vectors in the spherical
coordinate system

e..e, e, unit vectors in the
rectangular coordinate
system

E? Stokes operator defined by
Equation (7) (m™)

F force exerted on a particle
by the external fluid (N)

I unit dyadic

Kn Knudsen number

/ mean free path of the

external fluid (m)
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p dynamic pressure, N m™

(r,0,0) the spherical coordinates

v velocity field (m s™)

v, prescribed velocity field (m
Sfl

X position vector (m)

(x,,2) the rectangular coordinates

Greek Letters

a momentum accommodation
coefficient

y interfacial tension (Nm™")

¢ coefficient defined in
Equation (2.8)

n fluid viscosity (kg m™s™)

n internal-to-external
viscosity ratio of a droplet

K absolute constant velocity
gradient, s™

1 viscous stress dyadic (Nm™?)

o volume fraction of particles
in suspension

Subscripts

i properties inside the fluid
sphere

e effective properties

h coefficient related to Happel
cell model

k coefficient related to
Kuwabara cell model

s coefficient related to Simha
cell model

Superscripts

* dimensionless group

Refreences

Basset A. B. (1961), 4 Treatise on Hydrodynamics,
Vol. 2, Dover, New York, U. S. A.

Batchelor G. K. and Green J. T. (1972), The
Determination of the Bulk Stress in a Suspension
of Spherical Particles to Order c’. J. Fluid
Mech. 56: 401-427.

Beresnev, S. A. and Chernyak, V. G. (1986),
Thermophoresis of a Spherical Aerosol Particle
for Arbitrary Knudsen Numbers: Discussion and
the Results. Teplofizika Vysokikh Temperature
24: 549-557. ’

Chen S. H., Lin S. L., Kung C. and Nian Y. M.
(1999), Concentration Effects on Sedimentation
Velocity of Monodispersed Aerosol Particles. J.
Chem. Eng. Japan 32: 635-644.

Chen S. H. and Yang C. Y. (2000), Boundary and
Concentration Effects on Sedimentation of a
Liquid Aerosol Dispersion. J. Chin. Inst. Chem.
Engr. 31: 545-560.

Davis M. H. (1972), Collision of Small Cloud
Droplets: Gas Kinetic Effects. J. Atmos. Sci. 29:
911-915.

Einstein A. (1906), On the Theory of Brownian
Movement, in Investigations on the Theory of
Brownian Movement (ed. Furth R.), Dover, 1956.
A translation of a paper appearing in Ann. d.
Phys. 19: 371-381.

Fulford, G. D., Moo-Young M. and Babu. M.
(1971), Thermophoretic Acceleration of Particle
Deposition from Laminar Air Streams. Cana. J.
Chem. Eng. 49: 553-556.

Grashchenkov, S. I. (1996), The Effect of Slip on
the Motion of Two Droplets and a Droplet Close
to a Plane Surface of a Liquid. Aerosol Sci.
Tech. 25, 101-112.

Happel J. (1957), Viscosity of Suspensions of
Uniform Spheres. J. Appl. Phys. 28:
1288-1292.

Happel J. (1958), Viscous Flow in Multiparticle
Systems: Slow Motion of Fluids Relative to
Beds of Spherical Particles. A. . Ch. E. J., 4:
197-.

Happel J. and Brenner H. (1983), Low Reynolds
number Hydrodynamics, Nijhoff, Dordrecht, The



86 Chen et al, Aerosol and Air Quality Research, Vol. 2, No. 1, pp.71-86, 2002

Netherlands.

Hutchins D. K., Harper M. H. and Felder R. L.
(1995), Slip Correction Measurements for Solid
Spherical Particles by Modulated Dynamic Light
Scattering. Aerosol Sci. Technol. 22: 202-218.

Hunter R. J. (1986), Foundations of Colloid
Science, Vol. 1, Clarendon Press, Oxford, U. K.

Keh H. J. and Chen L. S. (2000), Effective
Viscosity of a Suspension of Fluid Droplets. J.
Chin. Inst. Chem. Engrs. 31: 295-307.

Kennard E. H. (1938), Kinetic Theory of Gases,

McGraw-Hill, New York.

Kuwabara S. (1959), The Forces Experienced by

Distributed  Parallel

Cylinders or Spheres in a Viscous Flow at Small

J. Phys. Soc. Japan 14:

Randomly Circular
Reynolds Numbers.
527-532.

Li, W. and Davis, E. J. (1995), The Effects of Gas
and Particle Properties on Thermophoresis. J.
Aerosol Sci. 26: 1085-1099.

Loyalka S. K. (1990), Slip and Jump Coefficients
for Rarefied Gas Flows: Variational Results for
Lennard-Jones and n(r)-6 Potentials. Physica A
163: 813-821.

Simha R. (1952), A Treatment of the Viscosity of
Concentrated Suspensions. J. Appl. Phys. 23:

1020-1024.

Takata, S. and Sone, Y. (1995), Flow induced
around a sphere with a non-uniform surface
temperature in a rarified gas, with application to
the drag and thermal force problems of a
spherical particle with an arbitrary thermal
conductivity.  Eur. J. Mech., B/Fluids 14:
487-518.

Talbot, L., Cheng, R. K., Scheffer, R. W. and Willis,
D. R. (1980), Thermophoresis of Particles in
Heated Boundary Layer. J. Fluid Mech. 101:
737-758.

Ying R. and Peters M. H. (1991), Interparticle and
Particle-Surface Gas Dynamic
Aerosol Sci. Technol. 14: 418-433.

Yoon B. J. and Kim B. J. (1987), Note on the

Direct Calculation of Mobility Functions for

Interactions.

Two Equal-Sized Spheres in Stokes Flow. J.
Fluid Mech. 185: 437-446.

Zydney A. L. (1995), Boundary Effects on the
Electrophoretic Motion of a Charged Particle in a
Spherical Cavity. J. Colloid Interface Sci. 169:
476-485.

Received for review, March 14, 2002
Accepted, April 9, 2002
AAQR-2002-08



