Aromatics Formation in the Oxidations of Trichloroethylene with Methane

Yo-ping G. Wu* and Ya-Fen Lin

Department of Chemical Engineering, National I-Lan Institute of Technology, I-Lan 26041, Taiwan, ROC

Experiments on oxidation of multi-chlorinated hydrocarbons, C_2HCl_3 , with hydrocarbon fuels, CH_4 , were performed in a laboratory scale flow reactor under fuel-rich and fuel-lean conditions. The major reaction products, C_2Cl_2 , C_2H_4 , CO, CO_2 and HCl, can be found in a lower temperature region under a higher oxygen containing environment. The aromatic compounds, including C_6H_6 , $C_6H_5Cl_3$, $C_6H_5Cl_1$, Cl_3Cl_4 , Cl_4Cl_4 , Cl_4

Keywords: trichloroethylene, aromatics formation, methane, combustion.

1. Introduction

Chlorocarbons are thought to be associated with the formation of aromatics, such di-benzo-dioxins and di-benzo-furans incinerators, and some are toxic and in some cases carcinogenic. Long-term exposure to even low levels of these compounds is not suggested because of health related effects (Junk and Ford, 1980; Oberg et al., 1985; Qun and Senkan, 1994). Different technologies have been developed for the safe destruction of chlorocarbons. Thermal destruction of organic pollutants in an oxygenrich atmosphere is the one most often used in the chemical waste disposal industry. It is reported that combustion of chlorinated hydrocarbons under severe conditions converts all carbon to CO₂ (Booty et al., 1995).

Theoretically, incineration could result in the total conversion of hazardous organic compounds

to innocuous thermodynamic end-products, such as CO₂ and H₂O, and other simple compounds such as HCl, which could be quantitatively neutralized and collected with existing pollution control equipment. In practice, a total conversion to innocuous materials cannot be achieved without considerable cost, and for an incinerator of less than optimum design or operating conditions, most of the thermally stable components in the waste feed may not be totally decomposed (Ho *et al.*, 1995).

Commercialized incineration at high temperatures with an excess of oxygen has become the chosen method, and is available. For chlorinated hydrocarbons, this technique may destroy all the initial parent species, but reaction products are not all converted to CO₂, as these combustion facilities are run in an oxygen-rich environment where there is no stable and desirable end adduct for chlorine. Chlorine oxide and Cl₂ are neither acceptable end products for discharge to the atmosphere, nor are they formed in a selective or quantitative manner for complete collection or neutralization. If an incinerator with an excess of oxygen operates under less than optimum

Tel.: +886-3-935-7400 ext. 702

Fax: +886-3-935-7025

E-mail address: ypwu@mail.ilantech.edu.tw

^{*}Corresponding author:

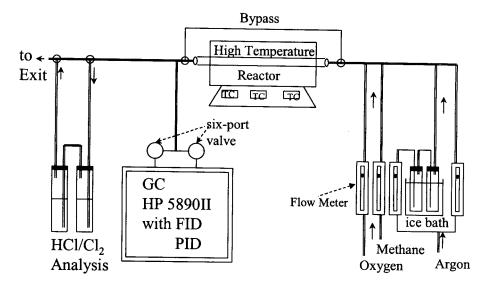
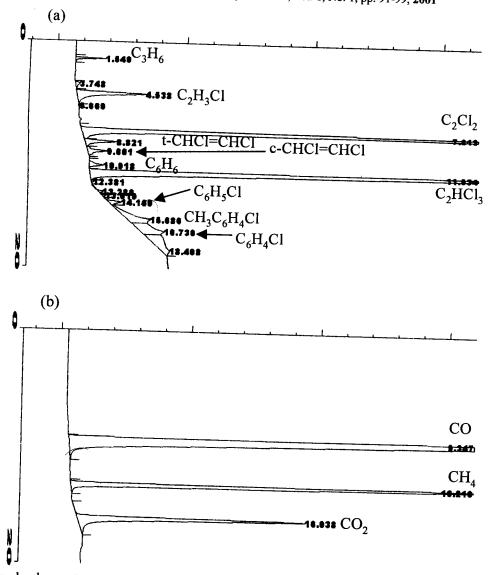


Figure 1. Schematic diagram of the experimental system for C₂HCl₃/CH₄/O₂/Ar. TC denotes a thermocouple and proportional controller pair providing temperature control for the high temperature reactor.

conditions, some chlorine-containing carbon products can usually be found as effluent, including partially decomposed and oxidized fragments of the initial chlorocarbons. These incomplete combustion products can and often do cause the formation of polyaromatic hydrocarbons (PAHs) and soot (Huang et al., 1997; Yildirim and Senkan, 1995).


This study was performed in a tubular flow reactor of 10 mm inside diameter to examine the high temperature oxidation of C₂HCl₃ with a methane argon bath. We characterize the reactant loss, intermediate and product formation as functions of time, temperature, and oxygen concentrations to describe the reaction process.

Experimental Method

A schematic diagram of the reactor system is shown in Figure 1. The high temperature tubular flow reactor was operated isothermally and isobarically in the range of 575 – 850 °C and at 1 atm total pressure, with average gas residence times in the range from 0.3 to 1.5 s.

Our experimental data was collected by maintaining a constant temperature and changing the flow rates of carrier and reactants (to maintain the constant reactant ratio), while varying the reaction time. A small computer code was used to calculate the needed flows for a selected reaction time and concentration ratio.

Argon was used as both a carrier and dilution gas. One part of the argon flow was passed through a two-stage saturation bubbler to pick up C₂HCl₃ (99.7%, Riedel-de Haen), which was held at 0°C using an ice bath. The other part of the argon flow was used to achieve the desired molar ratio between argon, methane, oxygen, and C₂HCl₃. Cylinder methane (91.3% CH₄, 8.3% C_2H_6 and 0.4% C_3H_8) and oxygen were added into the flow before it entered the reactor, and the flow was preheated to 180 °C at the reactor entrance. The quartz reactor tube, with 10 mm ID, was housed in a three-zone Carbolite TZF 12/65/550 electric tube furnace 40 cm in length. The actual temperature profile of gas in the radial direction of the tubular reactor was obtained using the type K thermocouple, which could be moved coaxially within the reactor.

Figure 2. Sample chromatograms. Temperature program: 40°C (3 min), 15°C/min to 220°C(final, 5 min). Carrier Gas: Helium. (a) Detector (PID): 220°C. Column: 3.175 mm × 3 m length stainless steel, with 25% SE30 on Chromosorb PAW 80/100. Reaction condition: C₂HCl₃: CH₄: O₂=1:3:10 (fuel-lean), 0.7 s under 750°C. (b) Detector (FID): 200°C. Column: 3.175 mm × 4.6 m length Carboxen 1000 connected to a CO/CO₂ converter (300°C). Reaction condition: C₂HCl₃: CH₄: O₂=1:3:5 (fuel-rich), 0.7 s under 775°C.

The temperature measurements were performed with a steady flow of argon gas through the reactor. The reactor effluent was monitored using an on line gas chromatograph (HP 5890 GC, Hewlett-Packard 5890 series II) with a flame ionization detector (FID) and a photoionization detector (PID). The outlet lines between the reactor and GC analysis were heated to 110°C to limit condensation. Two six-port gas-sampling valves (Valco Co.), each with a 1.0 ml volume loop, were used to inject the sample and both

were maintained at 170° C. A $3.175 \text{ mm} \times 3 \text{ m}$ length stainless steel packed column packed with 25% SE30 on Chromosorb PAW 80/100 mesh (Hewlett-Packard) was connected to the PID. A $3.175 \text{ mm} \times 4.6 \text{ m}$ length Carboxen 1000 stainless steel packed column (SUPELCO) was connected to a CO/CO_2 converter and then to the FID. The CO/CO_2 converter is a catalyzed column packed with 5% Ruthenium Alumina (Aldrich) which operated at $300 \text{ }^{\circ}\text{C}$ to convert CO and CO_2 to CH_4 by using H_2 as a reductant.

Representative chromatographs are shown in Figure 2 with compounds of interest labeled.

Positive identification of all reactor effluent species except CO and CO_2 was made by GC/MS applied to batch samples drawn from the reactor exit into previously evacuated 25ml Pyrex glass sample cylinders. A Finnigan TSQ 700 GC/MS, with a 1.0 μ m, 0.32 mm \times 50 m DB-1 column (J & W Scientific) was used.

The reactor outlet gases were passed through heated transfer lines, with a loosely packed plug of glass wool to trap any solid such as carbon soot, then to the GC samplers and the exhaust. The bulk of the outlet gases, however, was passed through a sodium-bicarbonate flask to neutralize the HCl, and then released to the atmosphere via a fume hood.

Quantitative analysis of HCl and Cl2 were performed for each run. The sample for HC1/ Cl₂ analyses was independently collected from the GC sampling as illustrated in Figure 1. In the HCl analysis, the effluent from the reactor was diverted through a two-stage bubbler containing 0.01M aqueous NaOH before being exhausted to a fume hood. The concentration of HCl in the effluent was then calculated after titrating a solution with 0.01M HCl to its phenolphthalein end point. For the Cl₂ analysis, the effluent was passed through the two-stage bubbler containing the solution of 3,3-dimethylbenzidine to absorb Cl_2 produced by the reaction. The concentration of Cl₂ was then determined by the spectrophotometric measurement of the absorbance of the resulting solution at 435 nm wavelength.

Results and Disscusion

Ten temperatures ranging from 575 to 800 °C were studied in the tubular flow reactor, and for each temperature it had a minimum of 4 gas-phase residence time points from 0.3 to 1.5 s

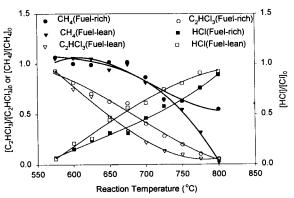


Figure 3. Normalized concentration (C/C₀) profiles of C_2HCl_3 and CH_4 as a function of temperature under fuel-rich (ϕ =1.25) and fuel-lean (ϕ =0.75) conditions.

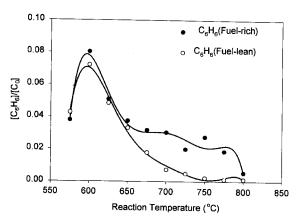
(evaluated at studied temperature and approximately 1 bar). The molar ratios for reactants are list in Table 1. For a premixed C₂HCl₃, CH₄, O₂ and Ar mixture, the overall stoichiometry can be expressed as

$$C_2HCl_3 + \frac{1}{R}CH_4 + (\frac{2}{R} + \frac{3}{2})O_2 \rightarrow (\frac{1}{R} + 2)CO_2 + 3HCl + (\frac{2}{R} - 1)H_2O \quad \left(1\right)$$

where R is the molar ratio of C_2HCl_3 to CH_4 in the mixture. The equivalence ratio, ϕ , is given by

$$\phi = \frac{(\frac{2}{R} + \frac{3}{2})}{actual \ O_2 \ in \ mixture}$$
 (2)

In this study, we have considered C_2HCl_3 and CH_4 together as fuel. Constant concentrations of 1% and 3% for C_2HCl_3 and CH_4 , respectively, were maintained throughout the experiments. Thus, the molar ratio (R) of C_2HCl_3 to CH_4 was 1/3 and the Cl/H was 0.231. O_2 of 5% and 10% in the influent gases were specified as fuel-rich (ϕ =1.25) and fuel-lean (ϕ =0.75), respectively.


Experimental results for the decomposition of C_2HCl_3 and CH_4 are shown in Figure 3, which shows normalized concentration (C/C₀) as a function of temperature at an average residence time of 0.7 s. Since the residence times for reaction temperature above $700^{\circ}C$ were from 0.3

_Tabl	e 1.	Reactant	features

		Mole p	Equiv.			
	C_2HCl_3	CH ₄	O_2	Ar	Ratio,	Cl/H
					φ	Ratio
Fuel-	1.0	3.0	5.0	91.0	1.25	0.231
rich						
Fuel-	1.0	3.0	10.0	86.0	0.75	0.231
lean						

to 1.0 s, 0.7 s was chosen for comparison in this C₂HCl₃ concentration consistently decreased with increasing temperature in both reaction environments. CH4 concentration stayed in peak levels for the low-medium temperature range for both reaction systems, and then decreased with increasing temperature as those in fuel-lean system gave faster decay as expected. Major products for both reaction systems included C₂Cl₂, C₂H₄, CO, CO₂ and HCl. Figure 3 also presents the formation profiles of HCl for the fuel-rich and fuel-lean systems. Clo denotes the total molar concentration of Cl from the inlet. HCl concentrations increased for both systems since the chlorinated reactant-- C2HCl3 -- decomposed with increasing temperature and showed slower formation in fuel-rich cases since C2HCl3 had a slower decay. Aromatic compounds, including benzene (C₆H₆), toluene (C₆H₅CH₃), chlorobenzene (C₆H₅Cl), chlorotoluene (CH₃C₆H₄Cl, isomers included) and dichlorobenzene (C₆H₅Cl₂, isomers included) were detected. In addition to the aromatic products, trace intermediates including C2H2, C₃H₆, C₃H₄, C₄H₈, C₄H₆, C₄H₄, CH₃Cl, C₂H₃Cl, trans-CHCl=CHCl, cis-CHCl=CHCl, COCl₂, C₂Cl₄, and C₂Cl₆ were also found in this study.

Figure 4 presents the formation profiles of C_6H_6 for the fuel-rich and fuel-lean systems as a function of temperature. The C_0 in this figure, so as in the following figures, denotes the total molar concentration of input carbons (C_2HCl_3 +

Figure 4. Normalized concentration (C/C₀) profiles of C_6H_6 as a function of temperature under fuel-rich (ϕ =1.25) and fuel-lean (ϕ =0.75) conditions.

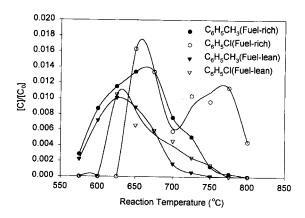
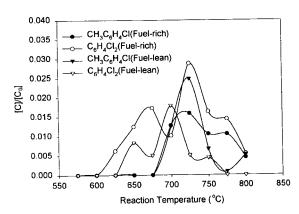



Figure 5. Normalized concentration (C/C₀) profiles of $C_6H_5CH_3$ and C_6H_5Cl as a function of temperature under fuel-rich (ϕ =1.25) and fuel-lean (ϕ =0.75) conditions.

CH₄). As shown in this figure, both systems formed C₆H₆ within the lower temperature range, but it decomposed faster for the fuel-lean case at temperatures higher than 650°C. These results are expected since the rate of decomposition of C₆H₆ increased with higher oxygen at higher temperatures.

Figure 5 shows distributions of C₆H₅CH₃ for both systems as a function of temperature. The profiles from both systems gave similar trends for C₆H₅CH₃ distributions. For the fuel-lean system, C₆H₅CH₃ had a lower formation tendency and decomposed faster as the temperature increased. Figure 5 also demonstrates the concentration profiles of C₆H₅Cl for the fuel-rich and fuel-lean cases as a

Figure 6. Normalized concentration (C/C₀) profiles of $CH_3C_6H_4Cl$ and $C_6H_4Cl_2$ as a function of temperature under fuel-rich (ϕ =1.25) and fuel-lean (ϕ =0.75) conditions.

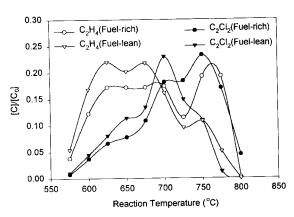


Figure 7 Normalized concentration (C/C₀) profiles of C_2H_4 and C_2Cl_2 as a function of temperature under fuel-rich (ϕ =1.25) and fuel-lean (ϕ =0.75) conditions.

function of temperature. There was about $25^{\circ}C$ difference for peak formation of C_6H_5Cl between the fuel-lean and fuel-rich reaction systems. It can be expected that the fuel-lean case gave faster decomposition of C_6H_6 and $C_6H_5CH_3$ as shown earlier. Both species in Figure 5 show that there were higher Cl or CH_3 radicals in fuel-rich system to attack the C_6H_6 formed.

Figure 6 shows the formations of $CH_3C_6H_4Cl$ for the fuel-rich and fuel-lean cases as a function of temperature. The profiles show similar trends for both cases, but it shows a higher formation of $CH_3C_6H_4Cl$ for the fuel-lean system. It was caused by, with reference to Figure 5, the decomposition of C_6H_5Cl (which may be attacked by CH_3 radicals to form $CH_3C_6H_4Cl$) or the decomposition of $C_6H_5CH_3$ (which may be

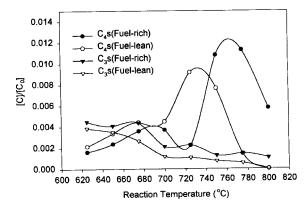


Figure 8 Normalized concentration (C/C_0) profiles of C_3 s (C_3H_6) and $C_3H_4)$ and C_4 s (C_4H_8) , C_4H_6 and $C_4H_4)$ as a function of temperature under fuel-rich $(\phi=1.25)$ and fuel-lean $(\phi=0.75)$ conditions.

attacked by Cl radicals to form CH₃C₆H₄Cl), which were faster in the fuel-lean system. Figure 6 also compares the formation of C₆H₄Cl₂ for both reaction systems. Both systems gave similar trends for C₆H₄Cl₂, but the fuel-lean system shows a lower formation and requires lower temperatures for its decomposition. This result shows it has a lower chance for highly chlorinated aromatics formation.

It should be helpful to present the profiles for other products, C₂H₄, C₂Cl₂, C₃H₆ and C₄ compounds, in order to analyze the formation pathways of aromatic compounds. presents the formation profiles of C₂H₄ and C₂Cl₂ for both the fuel-rich and fuel-lean systems in the studied temperature range. For the fuel-lean system, as expected, C2H4 had a higher formation tendency and gave a faster decay. Figure 7 also shows a C₂H₄ formation- decomposition tug for both reaction systems since temperature was higher than 675°C. The concentration of C₂H₄ decreased as systems first for both temperature got higher than 675°C, then increased as the temperature reached 725°C, and then decreased again as the temperature increased. This was due to the decomposition of the aromatic compounds at temperatures higher than discussed earlier, and to 650°C. as

recombination of CH₃ radicals, which are well recognized to be responsible for C₂H₄ formation at higher temperatures. Figure 7 also shows C₂Cl₂ profiles for the fuel-rich and fuel-lean cases. These two systems show similar profiles; however, the fuel-lean case had a lower peak temperature for the formation of C₂Cl₂ and then decomposed faster than the fuel-rich one. These profiles also show that C₂Cl₂ was mainly formed from the decomposition of C₂HCl₃ and that there were insignificant amounts of highly chlorinated aromatics formed in the course of the decomposition.

Figure 8 shows the formation of C₃ (C₃s) and C₄ compounds (C₄s) for both reaction systems as a function of temperature. We have to note that the C₃ compounds include C₃H₆ and C₃H₄ and that C₄ compounds include C₄H₈, C₄H₆, and C₄H₄ species. These profiles all show that in the higher oxygen environment, C₃ and C₄ compounds decomposed faster, as expected. The profiles of C₄s also show more significant peak levels than those of C_3 s. The fact that the profiles of C₄s rise again was due to the fact that CH₃C₆H₄Cl and C₆H₄Cl₂ started to decompose earlier at temperature higher than 700°C. The formation of these higher molecular weight intermediates is typical in fuel-rich hydrocarbon and chlorinated hydrocarbons systems (Qun and Senkan (1990, 1994)).

The formation pathways for aromatic species were believed to be due to the subsequent additions of C₂ to C₄ species, followed by the cyclization and dehydrogenation of the adducts (Weissman and Benson (1984); Frenklach et al. (1984); Benson (1992)). The chemically activated adducts involving C₃ species also has been suggested (Westmoreland et al. (1989); Miller and Melius (1992)). The formation pathways responsible for the aromatic species discussed above are as follows. The higher molecular weight intermediates, C₄s, for example, can be

formed via

$$C_2H_3 + C_2H_3 \Leftrightarrow C_4H_6, \tag{3}$$

$$C_2H_3 + C_2H_3 \Leftrightarrow C_4H_5 + H, \tag{4}$$

$$C_2H_3 + C_2H_4 \Leftrightarrow C_4H_6 + H, \tag{5}$$

$$C_2H_2 + C_2H_3 \Leftrightarrow C_4H_4 + H, \tag{6}$$

$$C_2H_2 + C_2H_2 \Leftrightarrow C_4H_4, \tag{7}$$

and

$$C_4H_6 + (H, O, OH, Cl, CH_3) \Leftrightarrow$$

 $C_4H_5 + (H_2, OH, H_2O, HCl, CH_4).$ (8)

 C_2H_2 can be formed via the decomposition of C_2H_4 .

The possible pathways for C_6H_6 formation, as suggest by Westmoreland et al. (1989), would be $C_4H_5 + C_2H_2 \Leftrightarrow C_6H_6 + H$, (9)

$$C_4H_3 + C_2H_2 \Leftrightarrow C_6H_5, \tag{10}$$

or as proposed by Miller and Melius (1992),

$$C_3H_3 + C_3H_3 \Leftrightarrow C_6H_6, \tag{11}$$

and

and

$$C_3H_3 + C_3H_3 \Leftrightarrow C_6H_5 + H, \tag{12}$$

where C_3H_3 can be formed from the dissociation of C_3H_4 .

Other related pathways for these aromatics include,

$$C_6H_6 + (H, O, Cl, OH, CH_3) \Leftrightarrow$$

 $C_6H_5 + (H_2, OH, HCl, H_2O, CH_4),$ (13)

$$C_6H_5 + (H_2, CH_4) \Leftrightarrow C_6H_6 + (H, CH_3),$$
 (14)

$$C_6H_6 + (CH_3, CI) \Leftrightarrow$$

 $(C_6H_5CH_3, C_6H_5CI) + H,$ (15)

$$C_6H_5 + (CH_3, CI) \Leftrightarrow$$

 $(C_6H_5CH_3, C_6H_5CI),$ (16)

$$C_6H_5Cl + (H, O, Cl, OH, CH_3) \Leftrightarrow C_6H_4Cl + (H_2, OH, HCl, H_2O, CH_4),$$
 (17)

$$C_6H_4Cl + (Cl, CH_3) \Leftrightarrow$$

$$(C_6H_4Cl_2, CH_3C_6H_4Cl), \tag{18}$$

$$C_6H_5CH_3 + (H, O, OH, Cl, CH_3) \Leftrightarrow$$

 $C_6H_4CH_3 + (H_2, OH, HCl, H_2O, CH_4),$ (19)

and

$$C_6H_4CH_3 + C1 \Leftrightarrow CH_3C_6H_4C1. \tag{20}$$

There are other possible pathways for the formation of these aromatics from some other cyclic species (Mitchell *et al.*, 1995; Xieqi *et al.*, 1993). However, these pathways were not present in this study since these species were not observed in our experiment.

Conclusions

The oxidation of C_2HCl_3 with CH_4 in an Ar bath gas was carried out at 1 atmosphere total pressure in a 10 mm ID tubular flow reactor under fuel-rich (ϕ =1.25) and fuel-lean (ϕ =0.75) conditions. The high temperature tubular flow reactor was operated isothermally and isobarically in the range 575 – 850 °C, with the average gas residence times in the range of 0.3 to 1.5 seconds.

The major products for both reaction systems include C_2Cl_2 , C_2H_4 , CO, CO_2 and HCl. Aromatic compounds, including C_6H_6 , $C_6H_5CH_3$, C_6H_5Cl , $CH_3C_6H_4Cl$ and $C_6H_5Cl_2$ were detected. Experimental data also show that in the higher oxygen environment, major products, such as C_2Cl_2 , CO, CO_2 and HCl, were detected in the lower reaction temperatures. Final products

such as CO₂ and HCl were found for reactions at temperatures greater than 750°C.

The formation pathway for aromatic species were believed to be due to the subsequent additions of C_2 to C_4 species, followed by the cyclization and dehydrogenation of the adducts. The chemically activated adducts involving C_3 species have also been considered.

Acknowledgement

We gratefully acknowledge funding from National Science Council of R.O.C. (NSC-87-2214-E-197-001).

References

Benson S. W. (1992), Radical Processes in the Pyrolysis of Acetylene, Int. J. Chem. Kinet. 24: 217.

Booty M. R., Bozzelli J. W., Ho W. and Magee R. S. (1995), Simulation of a Three-Stage Chlorocarbon Incinerator through the Use of a Detailed Reaction Mechanism: Chlorine to Hydrogen Mole Ratios below 0.15, Environ. Sci. Tech. 29: 3059-3063.

Frenklach M., Clary D., Gardiner W. C. and Stein S. E. (1984), Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1984, p.887.

Ho W., Booty M. R., Magee R. S. and Bozzelli J.
W. (1995), Analysis and Optimization of Chlorocarbon Incineration through Use of a Detailed Reaction Mechanism, Ind. Eng. Chem. Res. 34: 4185-4192.

Huang J., Onal I. and Senkan S. M. (1997), Formation of Trace Byproducts in the Premixed Flames of CH₃Cl/C₂H₄, Environ. Sci. Tech. 31: 1372-1381.

Junk G. A. and Ford C. S. (1980), A Review of Organic Emissions from Selected Combustion

- Processes, Chemosphere, 9: 187.
- Miller J. A., and Melius C. F. (1992), Kinetic and Thermodynamic Issues in the Formation of Aromatic Compounds in Flames of Aliphatic Fuels, Combust. Flame, 91: 21-39.
- Mitchell T. J., Benson S. W. and Karra S. B. (1995), Kinetic Model for Formation of Aromatics in the High Temperature Chlorination of Methane, Combust. Sci. and Tech. 107: 223-260.
- Oberg T., Aittola J. P. and Bergstrom J. G. T. (1985), Chlorinated Aromatics from the Combustion of Hazardous Waste, Chemosphere, 14: 215.
- Qun M. and Senkan S. M. (1990), Chemical Structures of Fuel-Rich, Premixed, Laminar Flames of CH₂Cl₂ and CH₄, Hazard. Waste Hazard. Mater. 7: 55-71.
- Qun M. and Senkan S. M. (1994), Chemical Kinetic Modeling of Fuel-Rich Flames of CH₂Cl₂/CH₄/O₂/Ar, Combust. Sci. and Tech. 101: 103-134.
- Weissman M. and Benson S. W. (1984), Pyrolysis of Methyl Chloride, a Pathway in the Chlorine-Catalyzed Polymerization of Methane, Int. J. Chem. Kinet. 16: 307.

- Westmoreland P. R., Dean A. M., Howard J. B., and Longwell J. P. (1989), Forming Benzene in Flames by Chemically Activated Isomerization, J. Phys. Chem. 93: 8171.
- Xieqi M., Cicek B. and Senkan S. M. (1993), Chemical Structures of Fuel-Rich and Fuel-Lean Flames of CCl₄/CH₄ Mixtures, Combust. Flame, 94: 131-145.
- Yildirim R. and Senkan S. M. (1995), Formation of High Molecular Weight Byproducts during the Pyrolysis and Oxidative Pyrolysis of CH₃Cl, Ind. Eng. Chem. Res. 34: 1842-1852.

Received for review, May 11, 2000 Accepted, September 21, 2000 AAQR-2001-10